HawkEye 360 explained

Type:Private
HawkEye 360, Inc.
Founded:September 16, 2015
Hq Location:Herndon, VA
Area Served:Worldwide
Products:RF data and analytics
Num Employees:150 (2022)
Website:www.he360.com

HawkEye 360 is an American geospatial analytics company headquartered in Herndon, Virginia. It is a commercial seller of radio frequency (RF) signal location data gathered by a satellite constellation.[1] [2]

History

HawkEye 360 was founded in 2015 with the goal of using small satellites to collect and geolocate RF signals for commercial use.[3] The company received initial seed financing from Allied Minds, a Boston-based venture capital firm.[4]

In 2016, HawkEye 360 began contracting the construction of their Pathfinder cluster of satellites with Deep Space Industries (DSI) and University of Toronto Institute for Aerospace Studies Space Flight Laboratory (UTIAS SFL).[5] In November 2016, the company completed a Series A round led by Razor's Edge Ventures with major participation from Raytheon.[6] While waiting for the satellites to be completed, the HawkEye began exhibiting its technology and received a patent for determining the location of RF transmitters.[7] [8]

The company's advisory board includes former members of the National Geospatial-Intelligence Agency, former Army and Air Force officers, and former members of the intelligence community.[3]

In December 2018, HawkEye 360 launched the company's first set of small satellites, known as the Pathfinder cluster, into orbit as part of Spaceflight's SSO-A SmallSat Express ride-share aboard a SpaceX Falcon9.[9] As of 2024, all satellites are still operational.

In April 2019, it released its first product, RFGeo, whose purpose was to identify and locate RF signals so customers can then view and analyze data.[10] In August 2019, the company announced a $70 million series B financing round.[11]

In October 2019, HawkEye 360 expanded the company's signal waveform library to include ultra-high frequency (UHF) band and L band frequencies, and an update to RFGeo. The company's signal expansion into the UHF band enabled monitoring of push-to-talk radios, which could aid discovery of cross-border smuggling operations and poaching. The update to RFGeo includes a process to extract vessels' MMSI identifiers to match it to its specific broadcasts. The RFGeo update also includes a catalog of previously collected RF Geo data so customers can order and access archived data.[12]

In December 2019, the National Reconnaissance Office (NRO) granted HawkEye 360 a contract[13] to explore combining commercial RF capabilities into NRO's geospatial intelligence architecture.[14] Also in 2019, the U.S. Federal Communications Commission (FCC) approved a license allowing HawkEye 360 to eventually launch up to 80 incremental satellites for the eventual steady-state operation of a 15-cluster constellation.[15]

In 2020, the National Air and Space Museum added a full-size model of one of HawkEye 360's Pathfinder satellites to display in their museum as part of an upcoming exhibit detailing the story of the space age.[16]

In 2021, the company launched its second and third satellite clusters as well as announcing raising $55 million in a series C financing round and $145 million in a series D financing round.[17] [18]

In 2022, the company launched its fourth and fifth satellite clusters and opened a manufacturing facility to enable constructing satellites in-house.[19]

In 2023, the company launched its sixth and seventh satellite clusters, as well as raising $68 million in a series D-1 funding round.[20] [21] The series D-1 funding round included an investment from and strategic agreement with defense contractor Lockheed Martin. As of October 2023, HawkEye 360's total capital raised was $378 million.

In December 2023, HawkEye 360 acquired Maxar Intelligence's RF Solutions business unit (formerly Aurora Insight) for an undisclosed amount.[22]

HawkEye 360 has plans to execute and maintain a 30-satellite constellation, and the company has launched a total of nine clusters to-date.[23] UTIAS SFL has supported the development of all 9 clusters, with some clusters built directly by SFL and others built in-house by HawkEye 360 with SFL providing technical support.[24]

Technology

At present, HawkEye 360 operates nine trios of compact satellites, known as clusters, which orbit the Earth at altitudes between 400 and 600 kilometers. These satellites employ a unique water propulsion system that enables them to maintain a specific formation, crucial for accurately triangulating and charting signal locations.[25]

Each satellite (also referred to as a Hawk) in the cluster has a Software-Defined Radio (SDR) with the ability to detect a wide range of radio frequencies. Once all three satellites have picked up on a common signal, they can trilaterate that signal with accuracies dependent upon the terrain, signal, and other factors.[26] [27]

Clusters 2 and beyond feature several enhancements relative to the pathfinder cluster. These new satellites are equipped with the capability to simultaneously gather multiple RF signals, enabling the creation of multi-layered RF data. Additionally, each satellite features an upgraded Software Defined Radio (SDR) for capturing higher quality data, leading to more precise geolocation. Furthermore, these satellites possess enhanced processing power, allowing them to manage larger volumes of data.[28] [29]

As of June 2024, 9 clusters have been launched (including the Pathfinder cluster), for a total of 27 hawk satellites currently in orbit:

Flight No.MissionCOSPAR IDLaunch dateLaunch vehicleOrbit altitudeInclinationNumber
deployed
Deorbited
1Hawk Pathfinder2018-0993 December 2018Falcon 9 Block 5570 km x 589 km97.6°30
2Hawk 22021-00624 January 2021Falcon 9 Block 5522 km x 534 km97.4°30
3Hawk 32021-05930 June 2021Falcon 9 Block 5508 km x 532 km97.6°30
4Hawk 42022-0331 April 2022Falcon 9 Block 5493 km x 505 km97.4°30
5Hawk 52022-05725 May 2022Falcon 9 Block 5522 km x 538 km97.5°30
6Hawk 62023-01124 January 2023Electron551 km x 555 km40.5°30
7Hawk 72023-05415 April 2023Falcon 9 Block 5498 km x 511 km97.4°30
8Hawk 82024-0667 April 2024Falcon 9 Block 5589 km x 594 km45.6°30
9Hawk 92024-0667 April 2024Falcon 9 Block 5586 km x 591 km45.6°30
In addition to the 27 Hawk satellites, HawkEye 360 also operates two spectrum scanning satellites obtained from its purchase of Maxar's RF Solutions unit:
MissionCOSPAR IDLaunch dateLaunch vehicleOrbit altitudeInclinationNumber
deployed
Deorbited?
Charlie2021-00624 January 2021Falcon 9 Block 5357 km x 367 km97.3°1No
Delta2023-0846 June 2023Falcon 9 Block 5469 km x 482 km97.5°1No

Uses

Maritime usage

In order to maintain maritime visibility, most vessels are mandated to use Automatic Identification System (AIS) beacons aboard vessels to locate them. Although AIS is a useful tool, there are many ways it can be rendered ineffective. Ships can turn their beacons off, effectively making them very difficult to detect and track. Other times, ships will input invalid coordinates (referred to as spoofing), so as to appear miles from their true location. Lastly, in high-traffic areas such as ports, it is difficult to distinguish vessels' signals due to the high density of RF activity.[30]

HawkEye 360 collects and analyzes RF frequencies used by ships for navigation to see vessels true locations and fill gaps in AIS information. This information regarding illicit maritime activity could help in global efforts to combat pirating and illegal fishing.[25] [31] [32]

Security and defense

Data collected by HawkEye 360 is used to monitor high-risk regions for unusual activity. For instance, HawkEye 360 observed increased RF activity in the Galwan River Valley off the China-India border, which enabled tasking of Earth observation imagery that revealed a Chinese military buildup in the area that was contributing to regional unrest to include dozens of reported military casualties.[33] This remote monitoring allows operatives to have an advantage of a more comprehensive understanding of an area before entering.

Telecommunications

HawkEye 360 is used to monitor frequency spectrum usage, to allow for planners to see in advance which areas have the highest density of RF activity and how spectrum resources can be dynamically deployed for use in that area.[34] Monitoring could also eventually enable telecommunications firms to more easily determine which bands are under-utilized in order to more efficiently deploy spectrum resources.[3]

Crisis Response

Using the company's satellites, HawkEye 360 can locate RF signals emitted by activated emergency beacons, which will decrease the time and effort of search and rescue operations. In instances of natural disasters, HawkEye 360 will be able to detect and assess the health of operational towers to ensure access to viable modes of communication for first responders and survivors.[34] [25]

Notes and References

  1. Web site: HawkEye 360, Inc. . 2023-05-14 . Geospatial World . en-US . "HawkEye 360 is a Radio Frequency (RF) data analytics company. It operates a commercial satellite constellation to identify, process, and geolocate a broad set of RF signals. HawkEye 360 extract value from the data through proprietary algorithms, fusing it with other sources to create analytical products that solve challenges for global customers. The company products include maritime domain awareness and spectrum mapping and monitoring.".
  2. Web site: HawkEye 360 . 2023-05-14 . www.eoportal.org . en . "With the initial Pathfinder mission launched in December 2018, HawkEye is a commercially owned and operated constellation of 15 microsatellites, with an additional six planned, developed by HawkEye 360 Inc. The mission provides spaceborne geolocation of radio frequency (RF) emitters, both terrestrial and aerial, for various commercial applications. The HawkEye microsatellites are launched in clusters of three, with the most recent launch occurring in May 2022.".
  3. New Satellites Will Use Radio Waves to Spy on Ships and Planes. Wired. www.wired.com. Scoles. Sarah. 2020-07-06. 2020-07-07. https://web.archive.org/web/20200707034101/https://www.wired.com/story/new-satellites-will-use-radio-waves-to-spy-on-ships-and-planes/. live.
  4. Web site: McQuilkin . Kieran . July 16, 2019 . Moonshot: HawkEye 360 is Tracking the World's Radio Signals – From Space . 2022-03-10 . www.americaninno.com . 2020-01-31 . https://web.archive.org/web/20200131060800/https://www.americaninno.com/dc/dc-startup/moonshot-hawkeye-360-is-tracking-the-worlds-radio-signals-from-space/ . live .
  5. Web site: Deep Space Industries, SFL to Provide Satellites for HawkEye 360's Pathfinder Mission – Parabolic Arc. 2020-07-06. 2020-04-28. https://web.archive.org/web/20200428110039/http://www.parabolicarc.com/2016/05/26/deep-space-industries-sfl-provide-satellites-hawkeye-360s-pathfinder-mission/. live.
  6. Web site: HawkEye 360 closes Series A-3 round, Raytheon invests. 11 September 2018. 6 July 2020. 6 July 2020. https://web.archive.org/web/20200706222039/https://www.spaceitbridge.com/hawkeye-360-closes-series-a-3-round-raytheon-invests.htm#:~:text=In%20August%2C%20HawkEye%20360%20announced,%E2%80%9D%20%E2%80%93%20now%20announced%20as%20Raytheon.. live.
  7. Web site: HawkEye 360, Inc. . Exhibit 1 - FCC Form 442 / HawkEye 360 Pathfinder Cluster / Item 7 and 8: Purpose of Experiment and Duration . 2020-07-06 . 2020-07-07 . https://web.archive.org/web/20200707110620/https://apps.fcc.gov/els/GetAtt.html?id=186545&x= . live .
  8. Web site: HawkEye 360 Competitors, Revenue and Alternatives. growjo.com. 2020-07-06. 2020-07-09. https://web.archive.org/web/20200709202945/https://growjo.com/company/HawkEye_360. live.
  9. Web site: First Hawkeye 360 satellites pinpointing signals. February 26, 2019. SpaceNews. July 6, 2020. March 10, 2022. https://web.archive.org/web/20220310070045/https://spacenews.com/first-hawkeye-360-satellites-pinpointing-signals/. live.
  10. Web site: Hawkeye 360 unveils first RF signal mapping product. 4 April 2019. 18 May 2021. 10 March 2022. https://web.archive.org/web/20220310070104/https://spacenews.com/Hawkeye-360-unveils-first-rf-signal-mapping-product/. live.
  11. Web site: Werner . Debra . 2019-08-06 . HawkEye 360 raises $70 million Series B financing . 2024-06-09 . SpaceNews . en-US.
  12. Web site: HawkEye 360 Expands Signal Catalog to Address New Markets. Adam. Bennett. ePRNews. 24 October 2019. 6 July 2020. 7 July 2020. https://web.archive.org/web/20200707115933/https://eprnews.com/hawkeye-360-expands-signal-catalog-to-address-new-markets-429636/. live.
  13. Web site: NRO Contracts For Commercial Radio & Radar Sensing. Theresa. Hitchens. 11 December 2019. 6 July 2020. 8 July 2020. https://web.archive.org/web/20200708044628/https://breakingdefense.com/2019/12/nro-contracts-for-commercial-radio-radar-sensing/. live.
  14. Web site: Hawkeye 360 RF Geolocation Company Awarded U.S. National Reconnaissance Office Study Contract. John. Sheldon. December 18, 2019. SpaceWatch.Global. August 31, 2020. July 7, 2020. https://web.archive.org/web/20200707021418/https://spacewatch.global/2019/12/hawkeye-360-rf-geolocation-company-awarded-u-s-national-reconnaissance-office-study-contract/. live.
  15. Web site: FCC approves HawkEye 360 application for 15 satellites. December 19, 2019. SpaceNews. July 6, 2020. March 10, 2022. https://web.archive.org/web/20220310070055/https://spacenews.com/fcc-approves-hawkeye-360-application-for-15-satellites/. live.
  16. Web site: Satnews Publishers: Daily Satellite News. www.satnews.com. 2020-07-06. 2020-07-06. https://web.archive.org/web/20200706213655/http://www.satnews.com/story.php?number=1700558756. live.
  17. Web site: Foust . Jeff . 2021-04-14 . HawkEye 360 raises $55 million . 2024-06-09 . SpaceNews . en-US.
  18. Web site: Werner . Debra . 2021-11-09 . HawkEye 360 raises $145 million in Series D round . 2024-06-09 . SpaceNews . en-US.
  19. Web site: Foust . Jeff . 2022-07-26 . HawkEye 360 opens satellite manufacturing facility in Virginia . 2024-06-09 . SpaceNews . en-US.
  20. Web site: Erwin . Sandra . 2023-10-18 . HawkEye 360 raises $10 million in funding round extension . 2024-06-09 . SpaceNews . en-US.
  21. Web site: Launch Timeline . 2024-06-09 . HawkEye 360 . en-US.
  22. Web site: Mishra . Shivam . 2023-12-19 . HawkEye 360 acquires RF Solutions from Maxar Intelligence . 2023-12-19 . Verdict . en-US.
  23. Web site: Bennett . Adam . 2024-04-08 . HawkEye 360 Achieves Successful Orbit Deployment of Clusters 8 & 9 . 2024-06-09 . HawkEye 360 . en-US.
  24. Web site: Werner . Debra . 2022-11-15 . SFL offers flexible support for HawkEye 360 constellation . 2024-06-09 . SpaceNews . en-US.
  25. Web site: HawkEye - Satellite Missions - eoPortal Directory . 2022-03-10 . directory.eoportal.org . en-US . 2022-02-23 . https://web.archive.org/web/20220223010605/https://directory.eoportal.org/web/eoportal/satellite-missions/h/HawkEye . live .
  26. Web site: 3 December 2018 . HawkEye 360 Announces Successful Launch of First Three Satellites - HawkEye 360 . live . https://web.archive.org/web/20200706212134/https://www.he360.com/hawkeye-360-announces-successful-launch-of-first-three-satellites/ . 6 July 2020 . 6 July 2020.
  27. Web site: Key Technologies for Commercial Radio Frequency Signal Mapping with Small Satellites « Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery. 2020-07-23. 2020-09-27. https://web.archive.org/web/20200927202013/https://eijournal.com/print/articles/high-performance-low-cost-attitude-control-and-formation-flying-technologies-key-to-commercial-radio-frequency-signal-mapping-with-small-satellites. live.
  28. Web site: July 16, 2020 . HawkEye 360 completes environmental testing of updated satellites . live . https://web.archive.org/web/20220310070103/https://spacenews.com/hawkeye-360-cluster-2/ . March 10, 2022 . July 16, 2020 . SpaceNews.
  29. Web site: HawkEye 360 Completes Milestone in Preparation to Launch Second Cluster. July 16, 2020. July 17, 2020. July 19, 2020. https://web.archive.org/web/20200719044529/https://papernewsnetwork.com/hawkeye-360-completes-milestone-in-preparation-to-launch-second-cluster/. live.
  30. Web site: AIS | Vessel tracking challenges. Kimbra. Cutlip. August 10, 2016. July 6, 2020. July 6, 2020. https://web.archive.org/web/20200706221240/https://globalfishingwatch.org/data/ais-and-the-challenges-of-tracking-vessels-at-sea/. live.
  31. Web site: Maritime. 2020-08-31. 2020-08-20. https://web.archive.org/web/20200820065304/https://www.he360.com/solutions/maritime/. live.
  32. Web site: SatMagazine. www.satmagazine.com. 2020-07-06. 2020-07-06. https://web.archive.org/web/20200706223851/http://www.satmagazine.com/story.php?number=189870516. live.
  33. Web site: India Today Bureau . 2020-06-19 . Bridges, roads, water channelizing machinery: Satellite data shows China's long haul plans in Galwan Valley . India Today . 2020-07-06 . 2020-07-09 . https://web.archive.org/web/20200709144313/https://www.indiatoday.in/india/story/bridges-roads-water-channelizing-machinery-satellite-data-shows-china-s-long-haul-plans-in-galwan-valley-1690430-2020-06-18 . live .
  34. Web site: SatMagazine. www.satmagazine.com. 2020-07-06. 2020-07-07. https://web.archive.org/web/20200707041914/http://www.satmagazine.com/story.php?number=2060893990. live.