Harmonic conjugate explained
defined on a
connected open set
is said to have a conjugate (function)
if and only if they are respectively the real and imaginary parts of a
holomorphic function
of the
complex variable
That is,
is conjugate to
if
is holomorphic on
As a first consequence of the definition, they are both
harmonic real-valued functions on
. Moreover, the conjugate of
if it exists, is unique
up to an additive constant. Also,
is conjugate to
if and only if
is conjugate to
.
Description
Equivalently,
is conjugate to
in
if and only if
and
satisfy the
Cauchy–Riemann equations in
As an immediate consequence of the latter equivalent definition, if
is any harmonic function on
the function
is conjugate to
for then the Cauchy–Riemann equations are just
and the
symmetry of the mixed second order derivatives,
Therefore, a harmonic function
admits a conjugated harmonic function if and only if the holomorphic function
has a
primitive
in
in which case a conjugate of
is, of course,
\operatorname{Im}f(x+iy).
So any harmonic function always admits a conjugate function whenever its
domain is
simply connected, and in any case it admits a conjugate locally at any point of its domain.
There is an operator taking a harmonic function u on a simply connected region in
to its harmonic conjugate
v (putting e.g.
v(
x0) = 0 on a given
x0 in order to fix the indeterminacy of the conjugate up to constants). This is well known in applications as (essentially) the
Hilbert transform; it is also a basic example in
mathematical analysis, in connection with
singular integral operators. Conjugate harmonic functions (and the transform between them) are also one of the simplest examples of a
Bäcklund transform (two
PDEs and a transform relating their solutions), in this case linear; more complex transforms are of interest in
solitons and
integrable systems.
Geometrically u and v are related as having orthogonal trajectories, away from the zeros of the underlying holomorphic function; the contours on which u and v are constant cross at right angles. In this regard, u + iv would be the complex potential, where u is the potential function and v is the stream function.
Examples
For example, consider the function
Sinceandit satisfies(
is the
Laplace operator) and is thus harmonic. Now suppose we have a
such that the Cauchy–Riemann equations are satisfied:
and
Simplifying,andwhich when solved gives
Observe that if the functions related to and were interchanged, the functions would not be harmonic conjugates, since the minus sign in the Cauchy–Riemann equations makes the relationship asymmetric.
The conformal mapping property of analytic functions (at points where the derivative is not zero) gives rise to a geometric property of harmonic conjugates. Clearly the harmonic conjugate of x is y, and the lines of constant x and constant y are orthogonal. Conformality says that contours of constant and will also be orthogonal where they cross (away from the zeros of). That means that v is a specific solution of the orthogonal trajectory problem for the family of contours given by u (not the only solution, naturally, since we can take also functions of v): the question, going back to the mathematics of the seventeenth century, of finding the curves that cross a given family of non-intersecting curves at right angles.
Harmonic conjugate in geometry
See main article: Projective harmonic conjugate. There is an additional occurrence of the term harmonic conjugate in mathematics, and more specifically in projective geometry. Two points A and B are said to be harmonic conjugates of each other with respect to another pair of points C, D if the cross ratio (ABCD) equals −1.
References
- Book: Brown . James Ward . Churchill . Ruel V. . Complex variables and applications . registration . 1996 . McGraw-Hill . New York . 0-07-912147-0 . 6th . 61 . If two given functions u and v are harmonic in a domain D and their first-order partial derivatives satisfy the Cauchy-Riemann equations (2) throughout D, v is said to be a harmonic conjugate of u..
External links