Haplogroup I (mtDNA) explained
I |
Origin-Place: | West Asia (and), or Southwest Asia |
Ancestor: | N1a1b (former N1e'I), |
Descendants: | I1, I2'3, I4, I5, I6, I7 |
Mutations: | T10034C, G16129A!, G16391A |
Haplogroup I is a human mitochondrial DNA (mtDNA) haplogroup. It is believed to have originated about 21,000 years ago, during the Last Glacial Maximum (LGM) period in West Asia (; ;). The haplogroup is unusual in that it is now widely distributed geographically, but is common in only a few small areas of East Africa, West Asia and Europe. It is especially common among the El Molo and Rendille peoples of Kenya, various regions of Iran, the Lemko people of Slovakia, Poland and Ukraine, the island of Krk in Croatia, the department of Finistère in France and some parts of Scotland and Ireland.
Origin
Haplogroup I is a descendant (subclade) of haplogroup N1a1b and sibling of haplogroup N1a1b1 . It is believed to have arisen somewhere in West Asia between 17,263 and 24,451 years before present (BP), with coalescence age of 20.1 thousand years ago . It has been suggested that its origin may be in Iran or more generally the Near East . It has diverged to at least seven distinct clades i.e. branches I1–I7, dated between 16–6.8 thousand years . The hypothesis about its Near Eastern origin is based on the fact that all haplogroup I clades, especially those from Late Glacial period (I1, I4, I5, and I6), include mitogenomes from the Near East . The age estimates and dispersal of some subclades (I1, I2’3, I5) are similar to those of major subclades of the mtDNA haplogroups J and T, indicating possible dispersal of the I haplogroup into Europe during the Late Glacial period (c. 18–12 kya) and postglacial period (c. 10–11 kya), several millennia before the European Neolithic period. Some subclades (I1a1, I2, I1c1, I3) show signs of the Neolithic diffusion of agriculture and pastoralism within Europe .
A similar view puts more emphasis on the Persian Gulf region of the Near East .
Distribution
Haplogroup I is found at moderate to low frequencies in East Africa, Europe, West Asia and South Asia . In addition to the confirmed seven clades, the rare basal/paraphyletic clade I* has been observed in three individuals; two from Somalia and one from Iran .
Africa
The highest frequencies of mitochondrial haplogroup I observed so far appear in the Cushitic-speaking El Molo (23%) and Rendille (>17%) in northern Kenya . The clade is also found at comparable frequencies among the Soqotri (~22%).[1]
Population | Location | Language Family | N | Frequency | Source |
---|
Amhara | Ethiopia | Afro-Asiatic > Semitic | 1/120 | 0.83% | |
Egyptians | Egypt | Afro-Asiatic > Semitic | 2/34 | 5.9% | |
Beta Israel | Ethiopia | Afro-Asiatic > Cushitic | 0/29 | 0.00% | |
Dawro Konta | Ethiopia | Afro-Asiatic > Omotic | 0/137 | 0.00% | and |
Ethiopia | Ethiopia | Undetermined | 0/77 | 0.00% | |
Ethiopian Jews | Ethiopia | Afro-Asiatic > Cushitic | 0/41 | 0.00% | |
Gurage | Ethiopia | Afro-Asiatic > Semitic | 1/21 | 4.76% | |
Hamer | Ethiopia | Afro-Asiatic > Omotic | 0/11 | 0.00% | and |
Ongota | Ethiopia | Afro-Asiatic > Cushitic | 0/19 | 0.00% | and |
Oromo | Ethiopia | Afro-Asiatic > Cushitic | 0/33 | 0.00% | |
Tigrai | Ethiopia | Afro-Asiatic > Semitic | 0/44 | 0.00% | |
Daasanach | Kenya | Afro-Asiatic > Cushitic | 0/49 | 0.00% | |
Elmolo | Kenya | Afro-Asiatic > Cushitic | 12/52 | 23.08% | and |
Luo | Kenya | Nilo-Saharan | 0/49 | 0.00% | and |
Maasai | Kenya | Nilo-Saharan | 0/81 | 0.00% | and |
Nairobi | Kenya | Niger-Congo | 0/100 | 0.00% | |
Nyangatom | Kenya | Nilo-Saharan | 1/112 | 0.89% | |
Rendille | Kenya | Afro-Asiatic > Cushitic | 3/17 | 17.65% | and |
Samburu | Kenya | Nilo-Saharan | 3/35 | 8.57% | and |
Turkana | Kenya | Nilo-Saharan | 0/51 | 0.00% | and |
Hutu | Rwanda | Niger-Congo | 0/42 | 0.00% | |
Dinka | Sudan | Nilo-Saharan | 0/46 | 0.00% | |
Sudan | Sudan | Undetermined | 0/102 | 0.00% | |
Burunge | Tanzania | Afro-Asiatic > Cushitic | 1/38 | 2.63% | |
Datoga | Tanzania | Nilo-Saharan | 0/57 | 0.00% | and |
Iraqw | Tanzania | Afro-Asiatic > Cushitic | 0/12 | 0.00% | |
Sukuma | Tanzania | Niger-Congo | 0/32 | 0.00% | and |
Turu | Tanzania | Niger-Congo | 0/29 | 0.00% | |
Yemeni | Yemen | Afro-Asiatic > Semitic | 0/114 | 0.00% | |
|
Asia
Haplogroup I is present across West Asia and Central Asia, and is also found at trace frequencies in South Asia. Its highest frequency area is perhaps in northern Iran (9.7%). Terreros 2011 notes that it also has high diversity there and reiterates past studies that have suggested that this may be its place of origin. Found in Svan population from Georgia(Caucasus) I* 4.2%."Sequence polymorphisms of the mtDNA control region in a human isolate: the Georgians from Swanetia."Alfonso-Sánchez MA1, Martínez-Bouzas C, Castro A, Peña JA, Fernández-Fernández I, Herrera RJ, de Pancorbo MM. The table below shows some of the populations where it has been detected.
Population | Language Family | N | Frequency | Source |
---|
Baluch | Indo-European | 0/39 | 0.00% | |
Brahui | Dravidian | 0/38 | 0.00% | |
Caucasus (Georgia)* | Kartvelian | 1/58 | 1.80% | |
Druze | – | 11/311 | 3.54% | |
Gilaki | Indo-European | 0/37 | 0.00% | |
Gujarati | Indo-European | 0/34 | 0.00% | |
Hazara | Indo-European | 0/23 | 0.00% | |
Hunza Burusho | Isolate | 2/44 | 4.50% | |
India | – | 8/2544 | 0.30% | |
Iran (North) | – | 3/31 | 9.70% | |
Iran (South) | – | 2/117 | 1.70% | |
Kalash | Indo-European | 0/44 | 0.00% | |
Kurdish (Western Iran) | Indo-European | 1/20 | 5.00% | |
Kurdish (Turkmenistan) | Indo-European | 1/32 | 3.10% | |
Lur | Indo-European | 0/17 | 0.00% | |
Makrani | Indo-European | 0/33 | 0.00% | |
Mazandarian | Indo-European | 1/21 | 4.80% | |
Pakistani | Indo-European | 0/100 | 0.00% | |
Pakistan | – | 1/145 | 0.69% | |
Parsi | Indo-European | 0/44 | 0.00% | |
Pathan | Indo-European | 1/44 | 2.30% | |
Persian | Indo-European | 1/42 | 2.40% | |
Shugnan | Indo-European | 1/44 | 2.30% | |
Sindhi | Indo-European | 1/23 | 8.70% | |
Turkish (Azerbaijan) | Turkic | 2/40 | 5.00% | |
Turkish (Anatolia)* | Turkic | 1/50 | 2.00% | |
Turkmen | Turkic | 0/41 | 0.00% | |
Uzbek | Turkic | 0/42 | 0.00% | |
|
Europe
Eastern Europe
In Eastern Europe, the frequency of haplogroup I is generally lower than in Western Europe (1 to 3 percent), but its frequency is more consistent between populations with fewer places of extreme highs or lows. There are two notable exceptions. Nikitin 2009 found that Lemkos (a sub- or co-ethnic group of Rusyns) in the Carpathian mountains have the "highest frequency of haplogroup I (11.3%) in Europe, identical to that of the population of Krk Island (Croatia) in the Adriatic Sea".[2] [3]
Population | N | Frequency | Source |
---|
Boyko | 0/20 | 0.00% | |
Hutsul | 0/38 | 0.00% | |
Lemko | 6/53 | 11.32% | |
Belorussians | 2/92 | 2.17% | |
Russia (European) | 3/215 | 1.40% | |
Romanians (Constanta) | 59 | 0.00% | |
Romanians (Ploiesti) | 46 | 2.17% | |
Russia | 1/50 | 2.0% | |
Ukraine | 0/18 | 0.00% | |
Croatia (Mainland) | 4/277 | 1.44% | |
Croatia (Krk) | 15/133 | 11.28% | |
Croatia (Brač) | 1/105 | 0.95% | |
Croatia (Hvar) | 2/108 | 1.9% | |
Croatia (Korčula) | 1/98 | 1% | |
Herzegovinians | 1/130 | 0.8% | |
Bosnians | 6/247 | 2.4% | |
Serbians | 4/117 | 3.4% | |
Macedonians | 2/146 | 1.4% | |
Macedonian Romani | 7/153 | 4.6% | |
Slovenians | 2/104 | 1.92% | |
Bosnians | 4/144 | 2.78% | |
Poles | 8/436 | 1.83% | |
Caucasus (Georgia)* | | 1/58 | 1.80% | |
Russians | 5/201 | 2.49% | |
Bulgaria/Turkey | 2/102 | 1.96% | |
|
Western Europe
In Western Europe, haplogroup I is most common in Northwestern Europe (Norway, the Isle of Skye, and the British Isles). The frequency in these areas is between 2 and 5 percent. Its highest frequency in Brittany, France where it is over 9 percent of the population in Finistère. It is uncommon and sometimes absent in other parts of Western Europe (Iberia, South-West France, and parts of Italy).
Population | Language | N | Frequency | Source |
---|
Austria/Switzerland | – | 4/187 | 2.14% | |
Basque (Admix Zone) | Basque/Labourdin côtier-haut navarrais | 0/56 | 0.00% | |
Basque (Araba) | Basque/Occidental | 0/55 | 0.00% | |
Basque (Bizkaia) | Basque/Biscayen | 1/59 | 1.69% | |
Basque (Central/Western Navarre) | Basque/Haut-navarrais méridional | 2/63 | 3.17% | |
Basque (Gipuskoa) | Basque/Gipuzkoan | 0/57 | 0.00% | |
Basque (Navarre Labourdin) | Basque/Bas-navarrais | 0/68 | 0.00% | |
Basque (North/Western Navarre) | Basque/Haut-navarrais septentrional | 0/51 | 0.00% | |
Basque (Roncal) | Basque/Roncalais-salazarais | 0/55 | 0.00% | |
Basque (Soule) | Basque/Souletin | 0/62 | 0.00% | |
Basque (South/Western Gipuskoa) | Basque/Biscayen | 0/64 | 0.00% | |
Béarn | French | 0/51 | 0.00% | |
Bigorre | French | 0/44 | 0.00% | |
Burgos | Spanish | 0/25 | 0.00% | |
Cantabria | Spanish | 0/18 | 0.00% | |
Chalosse | French | 0/58 | 0.00% | |
Denmark | – | 6/105 | 5.71% | |
England/Wales | – | 12/429 | 3.03% | |
Finland | – | 1/49 | 2.04% | |
Finland/Estonia | – | 5/202 | 2.48% | |
France (Finistère) | – | 2/22 | 9.10% | |
France (Morbihan) | – | 0/40 | 0.00% | |
France (Normandy) | – | 0/39 | 0.00% | |
France (Périgord-Limousin) | - | 2/72 | 2.80% | |
France (Var) | – | 2/37 | 5.40% | |
France/Italy | – | 2/248 | 0.81% | |
Germany | – | 12/527 | 2.28% | |
Iceland | – | 21/467 | 4.71% | |
Ireland | – | 3/128 | 2.34% | |
Italy (Tuscany) | – | 2/48 | 4.20% | |
La Rioja | Spanish | 1/51 | 1.96% | |
North Aragon | Spanish | 0/26 | 0.00% | |
Orkney | – | 5/152 | 3.29% | |
Saami | – | 0/176 | 0.00% | |
Scandinavia | – | 12/645 | 1.86% | |
Scotland | – | 39/891 | 4.38% | |
Spain/Portugal | – | 2/352 | 0.57% | |
Sweden | – | 0/37 | 0.00% | |
Western Bizkaia | Spanish | 0/18 | 0.00% | |
Western Isles/Isle of Skye | – | 15/246 | 6.50% | |
|
Historic and prehistoric samples
Haplogroup I has until recently been absent from ancient European samples found in Paleolithic and Mesolithic grave sites. In 2017, in a site on Italian island of Sardinia was found a sample with the subclade I3 dated to 9124–7851 BC, while in the Near East, in Levant was found a sample with yet-not-defined subclade dated 8850–8750 BC, while in Iran was found a younger sample with subclade I1c dated to 3972–3800 BC . In Neolithic Spain (c. 6090–5960 BC in Paternanbidea, Navarre) was found a sample with yet-not-defined subclade . Haplogroup I displays a strong connection with the Indo-European migrations; especially its I1, I1a1 and I3a subclades, which have been found in Poltavka and Srubnaya cultures in Russia (Mathieson 2015), among ancient Scythians (Der Sarkissian 2011), and in Corded Ware and Unetice Culture burials in Saxony .I3a has also been found in the Unetice Culture in Lubingine, Germany 2,200 B.C. to 1,800 B.C. courtesy article on Unetice Culture Wikipedia of 2 Skeletons that were DNA tested. Haplogroup I (with undetermined subclades) has also been noted at significant frequencies in more recent historic grave sites (and).
In 2013, Nature announced the publication of the first genetic study utilizing next-generation sequencing to ascertain the ancestral lineage of an Ancient Egyptian individual. The research was led by Carsten Pusch of the University of Tübingen in Germany and Rabab Khairat, who released their findings in the Journal of Applied Genetics. DNA was extracted from the heads of five Egyptian mummies that were housed at the institution. All the specimens were dated to between 806 BC and 124 AD, a time frame corresponding with the Late Dynastic and Ptolemaic periods. The researchers observed that one of the mummified individuals likely belonged to the I2 subclade.[4] Haplogroup I has also been found among ancient Egyptian mummies excavated at the Abusir el-Meleq archaeological site in Middle Egypt, which date from the Pre-Ptolemaic/late New Kingdom, Ptolemaic, and Roman periods.[5]
Haplogroup I5 has also been observed among specimens at the mainland cemetery in Kulubnarti, Sudan, which date from the Early Christian period (AD 550–800).[6]
Samples with determined subclades
Culture | Country | Site | Date | Haplogroup | Source |
Unetice | Germany | Esperstedt | 2050–1800 BC | I1 | Adler 2012; Brandt 2013 |
Bell Beaker | Germany | — | 2600–2500 BC | I1a1 | Lee 2012; Oliveiri 2013 |
Unetice | Germany | Plotzkau 3 | 2200–1550 BC | I1a1 | Brandt 2013 |
Unetice | Germany | Eulau | 1979–1921 BC | I1a1 | Brandt 2013 |
Srubnaya | Russia | Rozhdestveno I, Samara Steppes, Samara | 1850–1600 BC | I1a1 | Mathieson 2015 |
Seh Gabi | Iran | — | 3972–3800 BC | I1c | Lazaridis 2016 |
Cami de Can Grau | Spain | — | 3500–3000 BC | I1c1 | Sampietro 2007; Olivieri 2013 |
Late Dynastic-Ptolemaic | Egypt | — | 806 BC – 124 AD | I2 | Khairat 2013 |
Su Carroppu | Italy | — | 9124–7851 BC | I3 | Modi 2017 |
Scythian | Russia | Rostov-on-Don | 500–200 BC | I3 | Der Sarkissian 2011 |
Unetice | Germany | Benzingerode-Heimburg | 1653–1627 BC | I3a | Brandt 2013 |
Unetice | Germany | Esperstedt | 2131–1979 BC | I3a | Adler 2012; Brandt 2013; Haak 2015; Mathieson 2015 |
Unetice | Germany | Esperstedt | 2199–2064 BC | I3a | Adler 2012; Brandt 2013; Haak 2015 |
Poltavka | Russia | Lopatino II, Sok River, Samara | 2885–2665 BC | I3a | Mathieson 2015 |
Karasuk | Russia | Sabinka 2 | 1416–1268 BC | I4a1 | Allentoft 2015 |
Minoan | Greece | Ayios Charalambos | 2400–1700 BC | I5 | Hughey 2013 |
Minoan | Greece | Ayios Charalambos | 2400–1700 BC | I5 | Hughey 2013 |
Minoan | Greece | Ayios Charalambos | 2400–1700 BC | I5 | Hughey 2013 |
Christian Nubia | Sudan | Kulubnarti | 550–800 AD | I5 | Sirak 2016 |
Late Bronze Age | Armenia | Norabak | 1209–1009 BC | I5c | Allentoft 2015 |
Mezhovskava | Russia | Kapova cave | 1598–1398 BC | I5c | Allentoft 2015 |
|
Samples with unknown subclades
Populations | N | Frequency | Source |
---|
Roman Iron Age sites Bøgebjerggård (AD 1–400) Simonsborg (AD 1–200) Skovgaarde (AD 200–400) | 3/24 | 12.5% | Melchior 2008a, Hofreiter 2010 |
Viking Age burial sites Galgedil (AD 1000) Christian cemetery Kongemarken (AD 1000–1250) medieval cemetery Riisby (AD 1250–1450) | 4/29 | 13.79% | Melchior 2008, Hofreiter 2010 |
Anglo-Saxon burial sites Leicester:6 Lavington:6 Buckland:7 Norton:12 Norwich:17 | 1/48 | 2.08% | Töpf 2006 | |
The frequency of haplogroup I may have undergone a reduction in Europe following the Middle Ages. An overall frequency of 13% was found in ancient Danish samples from the Iron Age to the Medieval Age (including Vikings) from Denmark and Scandinavia compared to only 2.5% in modern samples. As haplogroup I is not observed in any ancient Italian, Spanish [contradicted by the recent research as have been found in pre-Neolithic Italy as well Neolithic Spain], British, central European populations, early central European farmers and Neolithic samples, according to the authors "Haplogroup I could, therefore, have been an ancient Southern Scandinavian type "diluted" by later immigration events" .
Subclades
Tree
This phylogenetic tree of haplogroup I subclades with time estimates is based on the paper and published research .
Hg (July 2013) | Age estimate (thousand years) | 95% confidence interval (thousand years) |
N1a1b | 28.6 | 23.5–33.9 |
I | 20.1 | 18.4–21.9 |
I1 | 16.3 | 14.6–18.0 |
I1a | 11.6 | 9.9–13.3 |
I1a1 | 4.9 | 4.2–5.6 |
I1a1a | 3.8 | 3.3–4.4 |
I1a1b | 1.4 | 0.5–2.2 |
I1a1c | 2.5 | 1.3–3.7 |
I1a1d | 1.8 | 1.0–2.6 |
I1b | 13.4 | 11.3–15.5 |
I1c | 10.3 | 8.4–12.2 |
I1c1 | 7.2 | 5.4–9.0 |
I1c1a | 4.0 | 2.5–5.4 |
I2'3 | 12.6 | 10.4–14.7 |
I2 | 6.8 | 6.0–7.6 |
I2a | 4.7 | 3.8–5.7 |
I2a1 | 3.2 | 2.1–4.4 |
I2b | 1.7 | 0.5–2.9 |
I2c | 4.7 | 3.6–5.8 |
I2d | 3.0 | 1.1–4.8 |
I2e | 3.1 | 1.4–4.8 |
I3 | 10.6 | 8.8–12.4 |
I3a | 7.4 | 6.1–8.7 |
I3a1 | 6.1 | 4.7–7.5 |
I3b | 2.6 | 1.1–4.2 |
I3c | 9.4 | 7.6–11.2 |
I4 | 15.1 | 12.3–18.0 |
I4a | 6.4 | 5.4–7.4 |
I4a1 | 5.7 | 4.5–6.7 |
I4b | 8.4 | 5.8–10.9 |
I5 | 18.4 | 16.4–20.3 |
I5a | 16.0 | 14.0–17.9 |
I5a1 | 9.2 | 7.1–11.3 |
I5a2 | 12.3 | 10.2–14.4 |
I5a2a | 1.6 | 1.0–2.1 |
I5a3 | 4.8 | 2.8–6.8 |
I5a4 | 5.6 | 3.5–7.8 |
I5b | 8.8 | 6.3–11.2 |
I6 | 18.4 | 16.2–20.6 |
I6a | 5.3 | 3.5–7.0 |
I6b | 13.1 | 10.4–15.8 |
I7 | 9.1 | 6.3–11.9 | |
Distribution
I1
I1 |
Origin-Date: | 15,231 ± 3,402 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I |
Mutations: | 455.1T, G6734A, G9966A, T16311C! |
It formed during the Last Glacial pre-warming period. It is found mainly in Europe, Near East, occasionally in North Africa and the Caucasus.It is the most frequent clade of the haplogroup .
I1a
I1a |
Origin-Date: | 11,726 ± 3,306 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I1 |
Mutations: | T152C!, G207A |
The subclade frequency peaks (circa 2.8%) are mostly located in North-Eastern Europe .
=I1a1
=
I1a1 |
Origin-Date: | 5,294 ± 2,134 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I1a |
Mutations: | G203A, C3990T, G9947A, A9966G!, T10915C! |
=I1a1a
=
I1a1a |
Origin-Date: | 3,327 ± 2,720 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I1a1 |
Mutations: | G9053A |
=I1a1a1
=
=I1a1a2
=
=I1a1b
=
I1a1b |
Origin-Date: | 2,608 ± 2,973 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I1a1 |
Mutations: | T14182C |
=I1a1c
=
I1a1c |
Origin-Date: | About 1,523 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I1a1 |
Mutations: | T6620C |
=I1a1d
=
I1a1d |
Origin-Date: | About 1,892 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I1a1 |
Mutations: | A1836G, T4023C, T13488C, T16189C! |
=I1a1e
=
I1b
I1b |
Origin-Date: | 11,135 ± 4,818 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I1 |
Mutations: | T6227C |
I1c
I1c |
Origin-Date: | 8,216 ± 3,787 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I1 |
Mutations: | G8573A, C16264T, G16319A, T16362C |
=I1c1
=
=I1c1a1
=
=I1c1a2
=
I1d
I1e
I1f
I2'3
I2'3 |
Origin-Date: | 11,308 ± 4,154 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I |
Mutations: | T152C!, G207A |
It is the common root clade for subclades I2 and I3. There's a sample from Tanzania with which I2'3 shares a variant at position 152 from the root node of haplogroup I, and this "node 152" could be upstream I2'3s clade . Both I2 and I3 might have formed during the Holocene period, and most of their subclades are from Europe, only few from the Near East . Examples of this ancestral branch have not been documented.
I2
I2 |
Origin-Date: | 6,387 ± 2,449 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I2'3 |
Mutations: | A15758G |
=I2a
=
I2a |
Origin-Date: | 3,771 ± 2,143 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I2 |
Mutations: | A11065G, G16145A |
=I2a1
=
I2a1 |
Origin-Date: | 2,986 ± 1,968 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I2a |
Mutations: | T3398C |
=I2a1a
=
GenBank ID | Population | Source |
---|
MT892955 | Finland | FamilyTreeDNA |
|
=I2a2
=
=I2a3
=
=I2b
=
I2b |
Origin-Date: | About 1,267 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I2 |
Mutations: | T6515C, 8281-8289d, A16166c |
=I2c
=
I2c |
Origin-Date: | About 2,268 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I2 |
Mutations: | T460C, G9438A |
=I2d
=
I2d |
Origin-Date: | About 3,828 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I2 |
Mutations: | G6480A |
=I2e
=
I2e |
Origin-Date: | About 2,936 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I2 |
Mutations: | G3591A |
I3
I3 |
Origin-Date: | 8,679 ± 3,410 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I2'3 |
Mutations: | T239C |
=I3a
=
I3a |
Origin-Date: | 6,091 ± 3,262 BP |
Origin-Place: | Oldest sample from Poltavka culture (Russia-Lopatino II, Sok River, Samara, 2885–2665 BC) (Mathieson 2015) |
Ancestor: | I3 |
Mutations: | T16086C |
=I3a1
=
I3a1 |
Origin-Date: | 5,070 ± 3,017 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I3a |
Mutations: | G2849A |
=I3b
=
I3b |
Origin-Date: | 5,596 ± 3,629 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I3 |
Mutations: | C16494T |
=I3c
=
=I3d
=
I4
I4 |
Origin-Date: | 14,913 ± 5,955 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I |
Mutations: | G8519A |
The clade splits into subclades I4a and newly defined I4b, with samples found in Europe, the Near East and the Caucasus .
GenBank ID | Population | Source |
---|
KJ021059 | – | FamilyTreeDNA |
|
I4a
I4a |
Origin-Date: | About 2,124 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I4 |
Mutations: | A10819G |
=I4a1
=
=I4a2
=
GenBank ID | Population | Source |
---|
KF254840 | Finland | FamilyTreeDNA |
|
I4b
I5
I5 |
Origin-Date: | 18,806 ± 4,005 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I |
Mutations: | A14233G |
Is the second most frequent clade of the haplogroup. Its subclades are found in Europe, e.g. I5a1, and the Near East, e.g. I5a2a and I5b .
I5a
I5a |
Origin-Date: | 15,116 ± 4,128 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I5 |
Mutations: | T5074C, C16148T |
=I5a1
=
I5a1 |
Origin-Date: | 11,062 ± 4,661 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I5a |
Mutations: | 8281-8289d, A12961G |
=I5a1a
=
=I5a1b
=
=I5a1c
=
=I5a2
=
=I5a2a
=
=I5a3
=
=I5a4
=
I5b
I5c
=I5c1
=
I6
I6 |
Origin-Date: | About 18,400 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I |
Mutations: | T3645C |
The subclade is very rare, found until July 2013 only in four samples from the Near East .
I6a
I6a |
Origin-Date: | About 5,300 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I6 |
Mutations: | (G203A), G3915A, A6116G, A7804G, T15287C, (A16293c) |
I7
I7 |
Origin-Date: | About 9,100 BP |
Origin-Place: | Insufficient Data |
Ancestor: | I |
Mutations: | C3534T, A4829G, T16324C |
It is the rarest defined subclade, until July 2013 found only in two samples from the Near East and the Caucasus .
See also
Backbone mtDNA Tree
References
Works cited
Journals
- . Achilli. Alessandro. Iommarini. Luisa. Olivieri. Anna. Pala. Maria. Kashani. Baharak Hooshiar. Reynier. Pascal. La Morgia. Chiara. Valentino. Maria Lucia. others. and. 8. 2012. Rare Primary Mitochondrial DNA Mutations and Probable Synergistic Variants in Leber’s Hereditary Optic Neuropathy. PLoS ONE. 7. 8. e42242. 22879922. 10.1371/journal.pone.0042242. free. 3411744.
- . Askapuli. Ayken. Vilar. Miguel. Garcia-Ortiz. Humberto. Zhabagin. Maxat. Sabitov. Zhaxylyk. Akilzhanova. Ainur. Ramanculov. Erlan. Schamiloglu. Uli. others. and. 8. 2022. Kazak mitochondrial genomes provide insights into the human population history of Central Eurasia. PLOS ONE. 17. 11. e0277771. 36445929. 10.1371/journal.pone.0277771. 9707748 . 2022PLoSO..1777771A . free.
- . Avila. Eduardo. Speransa. Pietro Augusto. Lindholz. Catieli Gobetti. Kahmann. Alessandro. Alho. Clarice Sampaio. 2022. 10.1016/j.fsigen.2021.102650. Haplotype distribution in a forensic full mtDNA genome database of admixed Southern Brazilians and its association with self-declared ancestry and pigmentation traits. Forensic Science International: Genetics. 57. 102650. 34972071. 245421504 .
- Behar. 2008. . 10.1371/journal.pone.0002062. 18446216. 2323359. DM. Metspalu. E. Kivisild. T. Rosset. S. Tzur. S. Hadid. Y. Yudkovsky. G. Rosengarten. D. Pereira. L. Amorim. A. Kutuev. I. Gurwitz. D. Bonne-Tamir. B. Villems. R. Skorecki. K. Counting the founders: The matrilineal genetic ancestry of the Jewish Diaspora. 3. 4. e2062. PLOS ONE. MacAulay. Vincent. 8. 2008PLoSO...3.2062B. free.
- Behar. 2012. . 10.1016/j.ajhg.2012.03.002. 22482806. 3322232. A "Copernican" Reassessment of the Human Mitochondrial DNA Tree from its Root. Doron M.. Van Oven. Mannis. Rosset. Saharon. Metspalu. Mait. Loogväli. Eva-Liis. Silva. Nuno M.. Kivisild. Toomas. Torroni. Antonio. Villems. Richard. The American Journal of Human Genetics. 90. 4. 675–84.
- Belyaeva. 2003. . 10.1353/hub.2003.0069. 14763602. Mitochondrial DNA variations in Russian and Belorussian populations. Olga. Bermisheva. Marina. Khrunin. Andrey. Slominsky. Petr. Bebyakova. Natalia. Khusnutdinova. E. K. (Elza Kamilevna). Mikulich. Aleksei Ignatevich. Limborskaia. S. A. (Svetlana Andreevna). Human Biology. 75. 5. 647–60. 23876546.
- Boattini. 2013. . 10.1002/ajpa.22212. MtDNA variation in East Africa unravels the history of afro-asiatic groups. Alessio. Castrì. Loredana. Sarno. Stefania. Useli. Antonella. Cioffi. Manuela. Sazzini. Marco. Garagnani. Paolo. De Fanti. Sara. Pettener. Davide. Luiselli. Donata. American Journal of Physical Anthropology. 150. 3. 375–385. 23283748.
- Bosch. 2006. . 10.1111/j.1469-1809.2005.00251.x. Paternal and maternal lineages in the Balkans show a homogeneous landscape over linguistic barriers, except for the isolated Aromuns. E.. Calafell. F.. Gonzalez-Neira. A.. Flaiz. C.. Mateu. E.. Scheil. H.-G.. Huckenbeck. W.. Efremovska. L.. Mikerezi. I.. Xirotiris. N.. Grasa. C.. Schmidt. H.. Comas. D.. Annals of Human Genetics. 70. 4. 459–87. 16759179. 23156886. 8.
- Brandt. 2013. . 10.1126/science.1241844. 24115443. Ancient DNA Reveals Key Stages in the Formation of Central European Mitochondrial Genetic Diversity. G.. W.. Haak. C.. Adler. C.. Roth. A.. Szécsényi-Nagy. S.. Karimnia. S.. Möller-Rieker. H.. Meller. R.. Ganslmeier. S.. Friederich. V.. Dresely. N.. Nicklisch. J.. Pickrell. F.. Sirocko. D.. Reich. A.. Cooper. K.. Alt. The Genographic Consortium. Science. 342. 6155. 257–261. 4039305. 2013Sci...342..257B.
- Brandstatter. 2004. . 10.1007/s00414-004-0466-z. Mitochondrial DNA control region sequences from Nairobi (Kenya): Inferring phylogenetic parameters for the establishment of a forensic database. Anita. Peterson. Christine T.. Irwin. Jodi A.. Mpoke. Solomon. Koech. Davy K.. Parson. Walther. Parsons. Thomas J.. International Journal of Legal Medicine. 118. 5. 294–306. 15248073. 19703169.
- . Cardinali. Irene. Bodner. Martin. Capodiferro. Marco Rosario. Amory. Christina. Migliore. Nicola Rambaldi. Gomez. Edgar J.. Myagmar. Erdene. Dashzeveg. Tumen. Carano. Francesco. Woodward. Scott R.. Parson. Walther. Perego. Ugo A.. Lancioni. Hovirag. Achilli. Alessandro. 2022. 10.3389/fgene.2021.819337. Mitochondrial DNA Footprints from Western Eurasia in Modern Mongolia. Frontiers in Genetics. 12. 819337. 35069708. 8773455 . free.
- . Cardoso. Sergio. Valverde. Laura. Alfonso-Sánchez. Miguel A.. Palencia-Madrid. Leire. Elcoroaristizabal. Xabier. Algorta. Jaime. Catarino. Susana. Arteta. David. others. and. 8. 2013. The expanded mtDNA phylogeny of the Franco-Cantabrian region upholds the pre-neolithic genetic substrate of Basques. PLOS ONE. 8. 7. e67835. 23844106. 10.1371/journal.pone.0067835. 3700859 . 2013PLoSO...867835C . free.
- Castrì. 2008. . Loredana. Kenyan crossroads: migration and gene flow in six ethnic groups from Eastern Africa. Journal of Anthropological Sciences. 86. 189–192. 19934476. Garagnani. P. Useli. A. Pettener. D. Luiselli. D .
- Castrì. 2009. . 10.1002/ajpa.21070. MtDNA variability in two Bantu-speaking populations (Shona and Hutu) from Eastern Africa: Implications for peopling and migration patterns in sub-Saharan Africa. Loredana. Tofanelli. Sergio. Garagnani. Paolo. Bini. Carla. Fosella. Xenia. Pelotti. Susi. Paoli. Giorgio. Pettener. Davide. Luiselli. Donata. American Journal of Physical Anthropology. 140. 2. 302–11. 19425093.
- Costa. 2009. . 10.1016/j.mad.2008.12.001. 19133286. MD. Cherni. L. Fernandes. V. Freitas. F. Ammar El Gaaied. AB. Pereira. L. Data from complete mtDNA sequencing of Tunisian centenarians: Testing haplogroup association and the "golden mean" to longevity. 130. 4. 222–6. Mechanisms of Ageing and Development. 6102820.
- Cvjetan. 2004. . S. Tolk. HV. Lauc. LB. Colak. I. Dordević. D. Efremovska. L. Janićijević. B. Kvesić. A. Klarić. IM. Metspalu. E. Pericić. M. Parik. J. Popović. D. Sijacki. A. Terzić. R. Villems. R. Rudan. P. Frequencies of mtDNA haplogroups in southeastern Europe – Croatians, Bosnians and Herzegovinians, Serbians, Macedonians and Macedonian Romani. Collegium Antropologicum. 28. 1. 193–8. 15636075. 8.
- . Davidovic. Slobodan. Malyarchuk. Boris. Grzybowski. Tomasz. Aleksic. Jelena M.. Derenko. Miroslava. Litvinov. Andrey. Rogalla-Ładniak. Urszula. Stevanovic. Milena. Kovacevic-Grujicic. Natasa. 2020. 10.1007/s00414-020-02324-x. Complete mitogenome data for the Serbian population: the contribution to high-quality forensic databases. International Journal of Legal Medicine. 134. 5. 1581–1590. 32504149. 219330450 .
- Derenko. 2007. . 10.1086/522933. 17924343. M. Malyarchuk. B. Grzybowski. T. Denisova. G. Dambueva. I. Perkova. M. Dorzhu. C. Luzina. F. Lee. HK. Vanecek. Tomas. Villems. Richard. Zakharov. Ilia. Phylogeographic analysis of mitochondrial DNA in northern Asian populations. 81. 5. 1025–41. 2265662. American Journal of Human Genetics. 8.
- . Derenko. Miroslava. Malyarchuk. Boris. Bahmanimehr. Ardeshir. Denisova. Galina. Perkova. Maria. Farjadian. Shirin. Yepiskoposyan. Levon. 2013. Complete mitochondrial DNA diversity in Iranians. PLOS ONE. 8. 11. e80673. 24244704. 10.1371/journal.pone.0080673. 3828245 . 2013PLoSO...880673D . free.
- . Derenko. Miroslava. Denisova. Galina. Malyarchuk. Boris. Hovhannisyan. Anahit. Khachatryan. Zaruhi. Hrechdakian. Peter. Litvinov. Andrey. Yepiskoposyan. Levon. 2019. Insights into matrilineal genetic structure, differentiation and ancestry of Armenians based on complete mitogenome data. Molecular Genetics and Genomics. 294. 6. 1547–1559. 31372716. 10.1007/s00438-019-01596-2. free.
- Dubut. 2003. . 10.1038/sj.ejhg.5201145. MtDNA polymorphisms in five French groups: Importance of regional sampling. Vincent. Chollet. Lionel. Murail. Pascal. Cartault. François. Béraud-Colomb. Eliane. Serre. Myriam. Mogentale-Profizi. Nérina. European Journal of Human Genetics. 12. 4. 293–300. 14694359. free.
- . Dulias . Katharina . Foody . George B. . Justeau . Pierre . Silva . Marina . Martiniano . Rui . Oteo-García . Gonzalo . Fichera . Alessandro . Rodrigues . Simão . Gandini. Francesca. Meynert. Alison. Donnelly. Kevin. Aitman. Timothy J.. Scottish Genomes Partnership . Chamberlain. Andrew. Lelong. Olivia. Kozikowski. George. Powlesland. Dominic. Waddington. Clive. Mattiangeli. Valeria. Bradley. Daniel G.. Bryk. Jaroslaw. Soares. Pedro. Wilson. James F.. Wilson. Graeme. Moore. Hazel. Pala. Maria. Edwards. Ceiridwen J.. Richards. Martin B. . 3 . 2022 . 10.1073/pnas.2108001119 . Ancient DNA at the edge of the world: Continental immigration and the persistence of Neolithic male lineages in Bronze Age Orkney . Proceedings of the National Academy of Sciences of the United States of America . 119 . 8 . e2108001119 . 35131896. 8872714 . 2022PNAS..11908001D . free.
- Fernandes. 2012. . 10.1016/j.ajhg.2011.12.010. The Arabian Cradle: Mitochondrial Relicts of the First Steps along the Southern Route out of Africa. Verónica. Alshamali. Farida. Alves. Marco. Costa. Marta D.. Pereira. Joana B.. Silva. Nuno M.. Cherni. Lotfi. Harich. Nourdin. Cerny. Viktor. Soares. Pedro. Richards. Martin B.. Pereira. Luísa. The American Journal of Human Genetics. 90. 2. 347–355. 8. 22284828. 3276663.
- Finnila. 2001. . 12949126. JS. Finnila. S. Majamaa. K. Lineage-specific selection in human mtDNA: Lack of polymorphisms in a segment of MTND5 gene in haplogroup J. 20. 12. 2132–42. 10.1093/molbev/msg230. Molecular Biology and Evolution. free.
- . Fregel. Rosa. Cabrera. Vicente. Larruga. Jose M.. Abu-Amero. Khaled K.. González. Ana M.. 2015. 10.1371/journal.pone.0129839. Carriers of Mitochondrial DNA Macrohaplogroup N Lineages Reached Australia around 50,000 Years Ago following a Northern Asian Route. PLOS ONE. 10. 6. e0129839. 26053380. 4460043 . 2015PLoSO..1029839F . free.
- García-Olivares. 2023. . Victor. Rubio-Rodríguez. Luis A.. Muñoz-Barrera. Adrián. Díaz-de Usera. Ana. Jáspez. David. Iñigo-Campos. Antonio. Rodríguez Pérez. María Del Crist. Cabrera de León. Antonio. etal. Digging into the admixture strata of current-day Canary Islanders based on mitogenomes. iScience. 26. 1. 105907. 36647378. 10.1016/j.isci.2022.105907. 9840145 . 2023iSci...26j5907G . free.
- Gasparre. 2007. . 10.1073/pnas.0703056104. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. G.. Porcelli. A. M.. Bonora. E.. Pennisi. L. F.. Toller. M.. Iommarini. L.. Ghelli. A.. Moretti. M.. Betts. C. M.. Martinelli. G. N.. Ceroni. A. R.. Curcio. F.. Carelli. V.. Rugolo. M.. Tallini. G.. Romeo. G.. Proceedings of the National Academy of Sciences. 104. 21. 9001–9006. 8. 17517629. 1885617. 2007PNAS..104.9001G. free.
- Gonder. 2006. 10.1093/molbev/msl209. Whole-mtDNA Genome Sequence Analysis of Ancient African Lineages. M. K.. Mortensen. H. M.. Reed. F. A.. De Sousa. A.. Tishkoff. S. A.. Molecular Biology and Evolution. 24. 3. 757–68. 17194802. free.
- Hartmann. 2009. . 10.1002/humu.20816. 18623076. A. Thieme. M. Nanduri. LK. Stempfl. T. Moehle. C. Kivisild. T. Oefner. PJ. Validation of microarray-based resequencing of 93 worldwide mitochondrial genomes. 30. 1. 115–22. Human Mutation. 205918494.
- Helgason. 2001. . 10.1086/318785. mtDNA and the Islands of the North Atlantic: Estimating the Proportions of Norse and Gaelic Ancestry. Agnar. Hickey. Eileen. Goodacre. Sara. Bosnes. Vidar. Stefánsson. Kári. Ward. Ryk. Sykes. Bryan. The American Journal of Human Genetics. 68. 3. 206–15. 1274484. 11179019.
- Hofreiter. 2010. . 10.1371/journal.pone.0011898. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13%) than among extant Danes and Scandinavians (~2.5%) as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type “diluted” by later immigration events.. Genetic Diversity among Ancient Nordic Populations. Hofreiter. Michael. Linea. Lynnerup. Niels. Siegismund. Hans R.. Kivisild. Toomas. Dissing. Jørgen. PLOS ONE. 5. 7. e11898. 20689597. 2912848. 2010PLoSO...511898M. free.
- Janssen. 2006. . 10.1055/s-2006-924066. 16705548. GM. Neu. A. 't Hart. LM. Van De Sande. CM. Antonie Maassen. J. Novel mitochondrial DNA length variants and genetic instability in a family with diabetes and deafness. 114. 4. 168–74. Experimental and Clinical Endocrinology & Diabetes.
- Keyser. 2009. none. 10.1007/s00439-009-0683-0. Ancient DNA provides new insights into the history of south Siberian Kurgan people. Christine. Bouakaze. Caroline. Crubézy. Eric. Nikolaev. Valery G.. Montagnon. Daniel. Reis. Tatiana. Ludes. Bertrand. Human Genetics. 126. 3. 395–410. 19449030. 21347353.
- Kivisild. 2004. . 10.1086/425161. 15457403. 1182106. T. Reidla. M. Metspalu. E. Rosa. A. Brehm. A. Pennarun. E. Parik. J. Geberhiwot. T. Usanga. E. Villems. Richard. Ethiopian mitochondrial DNA heritage: Tracking gene flow across and around the gate of tears. 75. 5. 752–70. American Journal of Human Genetics. 8.
- Knight. 2003. . 10.1016/S0960-9822(03)00130-1. 12646128. A. Underhill. PA. Mortensen. HM. Zhivotovsky. LA. Lin. AA. Henn. BM. Louis. D. Ruhlen. M. Mountain. JL. African Y chromosome and mtDNA divergence provides insight into the history of click languages. 13. 6. 464–73. Current Biology. 52862939. free.
- Krings. 1999. . 10.1086/302314. 10090902. 1377841. M. Salem. AE. Bauer. K. Geisert. H. Malek. AK. Chaix. L. Simon. C. Welsby. D. Di Rienzo. A. Utermann. Gerd. Sajantila. Antti. Pääbo. Svante. Stoneking. Mark. MtDNA analysis of Nile River Valley populations: A genetic corridor or a barrier to migration?. 64. 4. 1166–1176. American Journal of Human Genetics. 8.
- . Kutanan. Wibhu. Kampuansai. Jatupol. Brunelli. Andrea. Ghirotto. Silvia. Pittayaporn. Pittayawat. Ruangchai. Sukhum. Schröder. Roland. Macholdt. Enrico. others. and. 8. 2018. New insights from Thailand into the maternal genetic history of Mainland Southeast Asia. European Journal of Human Genetics. 26. 6. 898–911. 29483671. 10.1038/s41431-018-0113-7. 5974021 . free.
- Lalueza-Fox. 2004. none. 10.1098/rspb.2004.2698. 15255049. C. Sampietro. ML. Gilbert. MT. Castri. L. Facchini. F. Pettener. D. Bertranpetit. J. Unravelling migrations in the steppe: Mitochondrial DNA sequences from ancient central Asians. 271. 1542. 941–7. 1691686. Proceedings: Biological Sciences.
- . Lang. Martin. Vocke. Cathy D.. Merino. Maria J.. Schmidt. Laura S.. Linehan. W. Marston. 2015. 10.1038/modpathol.2015.101. Mitochondrial DNA mutations distinguish bilateral multifocal renal oncocytomas from familial Birt-Hogg-Dubé tumors. Modern Pathology. 28. 11. 1458–1469. 26428318. 4628590 . free.
- Lazaridis. 2016. 10.1038/nature19310. Iosif. Genomic insights into the origin of farming in the ancient Near East. 536. 7617. 419–24. 5003663. Nature. 2016Natur.536..419L. 27459054.
- Maca-Meyer. . 2001. 10.1186/1471-2156-2-13. 11553319. N. González. AM. Larruga. JM. Flores. C. Cabrera. VM. Major genomic mitochondrial lineages delineate early human expansions. 2. 13. 55343. BMC Genetics . free .
- MacAulay. 1999. none. 10.1086/302204. The Emerging Tree of West Eurasian mtDNAs: A Synthesis of Control-Region Sequences and RFLPs. Vincent. Richards. Martin. Hickey. Eileen. Vega. Emilce. Cruciani. Fulvio. Guida. Valentina. Scozzari. Rosaria. Bonné-Tamir. Batsheva. Sykes. Bryan. Torroni. Antonio. The American Journal of Human Genetics. 64. 232–49. 9915963. 1377722. 1. 8.
- Malyarchuk. 2001. . 10.1046/j.1469-1809.2001.6510063.x. Mitochondrial DNA variability in Russians and Ukrainians: Implication to the origin of the Eastern Slavs. B. A.. Derenko. M. V.. Annals of Human Genetics. 65. 63–78. 11415523. Pt 1. 9392520. free.
- Malyarchuk. 2003. . 12940915. BA. Grzybowski. T. Derenko. MV. Czarny. J. Drobnic. K. Miścicka-Sliwka. D. Mitochondrial DNA variability in Bosnians and Slovenians. 67. Pt 5. 412–25. Annals of Human Genetics. 10.1046/j.1469-1809.2003.00042.x. 2105448.
- Malyarchuk. 2010. . 10.1093/molbev/msq065. 20457583. B. Derenko. M. Denisova. G. Kravtsova. O. Mitogenomic diversity in Tatars from the Volga-Ural region of Russia. 27. 10. 2220–6. Molecular Biology and Evolution. free.
- . Malyarchuk. Boris. Litvinov. Andrey. Derenko. Miroslava. Skonieczna. Katarzyna. Grzybowski. Tomasz. Grosheva. Aleksandra. Shneider. Yuri. Rychkov. Sergei. Zhukova. Olga. 2017. 10.1016/j.fsigen.2017.06.003. Mitogenomic diversity in Russians and Poles. Forensic Science International. Genetics. 30. 51–56. 28633069.
- . Malyarchuk. Boris. Derenko. Miroslava. Denisova. Galina. Litvinov. Andrey. Rogalla. Urszula. Skonieczna. Katarzyna. Grzybowski. Tomasz. Pentelényi. Klára. Guba. Zsuzsanna. Zeke. Tamás. Molnár. Mária Judit. 2018. 10.1007/s00438-018-1458-x. Whole mitochondrial genome diversity in two Hungarian populations. Molecular Genetics and Genomics. 293. 5. 1255–1263. 29948329. 47010554 .
- . Margaryan. Ashot. Derenko. Miroslava. Hovhannisyan. Hrant. Malyarchuk. Boris. Heller. Rasmus. Khachatryan. Zaruhi. Avetisyan. Pavel. Badalyan. Ruben. Bobokhyan. Arsen. Melikyan. Varduhi. Sargsyan. Gagik. Piliposyan. Ashot. Simonyan. Hakob. Mkrtchyan. Ruzan. Denisova. Galina. Yepiskoposyan. Levon. Willerslev. Eske. Allentoft. Morten E.. 2017. 10.1016/j.cub.2017.05.087. Eight Millennia of Matrilineal Genetic Continuity in the South Caucasus. Current Biology. 27. 13. 2023–2028.e7. 28669760. free.
- Martinez-Cruz. 2012. . 10.1093/molbev/mss091. Evidence of Pre-Roman Tribal Genetic Structure in Basques from Uniparentally Inherited Markers. B.. Harmant. C.. Platt. D. E.. Haak. W.. Manry. J.. Ramos-Luis. E.. Soria-Hernanz. D. F.. Bauduer. F.. Salaberria. J.. Oyharcabal. B.. Quintana-Murci. L.. Comas. D.. Genographic. Consortium. Molecular Biology and Evolution. 29. 9. 2211–22. 22411853. 8. free.
- Melchior. 2008. . 10.1371/journal.pone.0002214. Evidence of Authentic DNA from Danish Viking Age Skeletons Untouched by Humans for 1,000 Years. Ahmed. Niyaz. Linea. Kivisild. Toomas. Lynnerup. Niels. Dissing. Jørgen. PLOS ONE. 3. 5. e2214. 18509537. 2386972. 2008PLoSO...3.2214M. free.
- Metspalu. 2004. . 10.1186/1471-2156-5-26. Mait. Kivisild. Toomas. Metspalu. Ene. Parik. Jüri. Hudjashov. Georgi. Kaldma. Katrin. Serk. Piia. Karmin. Monika. Behar. Doron M. Gilbert. M Thomas P. Endicott. Phillip. Mastana. Sarabjit. Papiha. Surinder S. Skorecki. Karl. Torroni. Antonio. Villems. Richard. BMC Genetics. 5. 26. 15339343. Most of the extant mtDNA boundaries in south and southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans. 516768 . free .
- Mikkelsen. 2010. . 10.1016/j.fsigen.2009.07.007. 20457038. Mitochondrial DNA HV1 and HV2 variation in Danes. Martin. Sørensen. Erik. Rasmussen. Erik Michael. Morling. Niels. Forensic Science International: Genetics. 4. 4. e87-8.
- Mishmar. 2003. . 10.1073/pnas.0136972100. 12509511. D. Ruiz-Pesini. E. Golik. P. MacAulay. V. Clark. AG. Hosseini. S. Brandon. M. Easley. K. Chen. E. Brown. M. D.. Sukernik. R. I.. Olckers. A.. Wallace. D. C.. Natural selection shaped regional mtDNA variation in humans. 100. 1. 171–6. 140917. Proceedings of the National Academy of Sciences of the United States of America. 8. 2003PNAS..100..171M. free.
- Modi. 2017. 10.1038/srep42869. Alessandra. Complete mitochondrial sequences from Mesolithic Sardinia. 7. 5335606. Scientific Reports. 28256601. 42869. 2017NatSR...742869M.
- Musilová. 2011. none. 10.1002/ajpa.21522. Population history of the Red Sea-genetic exchanges between the Arabian Peninsula and East Africa signaled in the mitochondrial DNA HV1 haplogroup. Eliška. Fernandes. Verónica. Silva. Nuno M.. Soares. Pedro. Alshamali. Farida. Harich. Nourdin. Cherni. Lotfi. Gaaied. Amel Ben Ammar El. Al-Meeri. Ali. Pereira. Luísa. Černý. Viktor. American Journal of Physical Anthropology. 145. 4. 592–8. 21660931. 8.
- Nikitin. 2009. . 10.3378/027.081.0104. Mitochondrial DNA Sequence Variation in the Boyko, Hutsul, and Lemko Populations of the Carpathian Highlands. Human Biology. Alexey G.. Kochkin. Igor T.. June. Cynthia M.. Willis. Catherine M.. McBain. Ian. Videiko. Mykhailo Y.. 81. 43–58. 19589018. 1. 45791162.
- Non. 2011. . 10.1002/ajpa.21360. 20623605. Mitochondrial DNA reveals distinct evolutionary histories for Jewish populations in Yemen and Ethiopia. Amy L.. Al-Meeri. Ali. Raaum. Ryan L.. Sanchez. Luisa F.. Mulligan. Connie J.. American Journal of Physical Anthropology. 144. 1–10. 1.
- Olivieri. 2013. . 10.1371/journal.pone.0070492. 23936216. Anna. Pala. Maria. Gandini. Francesca. Kashani. Baharak Hooshiar. Perego. Ugo A.. Woodward. Scott R.. Grugni. Viola. Battaglia. Vincenza. Semino. Ornella. Achilli. Alessandro. Richards. Martin B.. Torroni. Antonio. Mitogenomes from Two Uncommon Haplogroups Mark Late Glacial/Postglacial Expansions from the Near East and Neolithic Dispersals within Europe. 8. 7. e70492. PLOS ONE. 3729697. 2013PLoSO...870492O. free.
- . Olivieri. Anna. Sidore. Carlo. Achilli. Alessandro. Angius. Andrea. Posth. Cosimo. Furtwängler. Anja. Brandini. Stefania. Capodiferro. Marco Rosario. theothers. and. 8. 2017. Mitogenome Diversity in Sardinians: A Genetic Window onto an Island's Past. Molecular Biology and Evolution. 34. 5. 1230–1239. 28177087. 10.1093/molbev/msx082. 5400395 . free.
- Palanichamy. 2004. . 10.1086/425871. 15467980. MG. Sun. C. Agrawal. S. Bandelt. HJ. Kong. QP. Khan. F. Wang. CY. Chaudhuri. TK. Palla. V. Zhang. Ya-Ping. Phylogeny of mitochondrial DNA macrohaplogroup N in India, based on complete sequencing: Implications for the peopling of South Asia. 75. 6. 966–78. 1182158. American Journal of Human Genetics. 8.
- Pereira. 2007. . 10.1093/molbev/msm004. 17218641. L. Gonçalves. J. Franco-Duarte. R. Silva. J. Rocha. T. Arnold. C. Richards. M. MacAulay. V. No evidence for an mtDNA role in sperm motility: Data from complete sequencing of asthenozoospermic males. 24. 3. 868–74. Molecular Biology and Evolution. free.
- Pericić. 2005. . 16100752. M. Barać Lauc. L. Martinović Klarić. I. Janićijević. B. Rudan. P. Review of Croatian genetic heritage as revealed by mitochondrial DNA and Y chromosomal lineages. 46. 4. 502–13. Croatian Medical Journal.
- Pichler. 2010. . 10.1038/ejhg.2009.172. 19844259. Drawing the history of the Hutterite population on a genetic landscape: Inference from Y-chromosome and mtDNA genotypes. Irene. Fuchsberger. Christian. Platzer. Christa. Çalişkan. Minal. Marroni. Fabio. Pramstaller. Peter P. Ober. Carole. European Journal of Human Genetics. 18. 4. 463–70. 2987252.
- . Piotrowska-Nowak. Agnieszka. Elson. Joanna L.. Sobczyk-Kopciol. Agnieszka. Piwonska. Aleksandra. Puch-Walczak. Aleksandra. Drygas. Wojciech. Ploski. Rafal. Bartnik. Ewa. Tonska. Katarzyna. 2019. 10.3389/fgene.2018.00702. New mtDNA Association Model, MutPred Variant Load, Suggests Individuals With Multiple Mildly Deleterious mtDNA Variants Are More Likely to Suffer From Atherosclerosis. Frontiers in Genetics. 9. 702. 30671084. 6332467 . free.
- . Piotrowska-Nowak. Agnieszka. Kosior-Jarecka. Ewa L.. Schab. Aleksandra. Wrobel-Dudzinska. Dominika. Bartnik. Ewa. Zarnowski. Tomasz. Tonska. Katarzyna. 2019. 10.1016/j.exer.2018.10.004. Investigation of whole mitochondrial genome variation in normal tension glaucoma. Experimental Eye Research. 178. 186–197. 30312593. 52974590 .
- . Piotrowska-Nowak. Agnieszka. Krawczyński. Maciej R.. Kosior-Jarecka. Ewa. Ambroziak. Anna M.. Korwin. Magdalena. Ołdak. Monika. Tońska. Katarzyna. Bartnik. Ewa. 2020. 10.1007/s11011-020-00605-3. Mitochondrial genome variation in male LHON patients with the m.11778G > A mutation. Metabolic Brain Disease. 35. 8. 1317–1327. 32740724. 7584531 . free.
- . Piotrowska-Nowak. Agnieszka. Safranow. Krzysztof. Adamczyk. Jakub G.. Sołtyszewski. Ireneusz. Cięszczyk. Paweł. Tońska. Katarzyna. Żekanowski. Cezary. Borzemska. Beata. 2023. Mitochondrial Genome Variation in Polish Elite Athletes. International Journal of Molecular Sciences. 24. 16. 12992. 37629173. 10.3390/ijms241612992. 10454803 . free.
- Poloni. 2009. . 10.1111/j.1469-1809.2009.00541.x. 19706029. Genetic Evidence for Complexity in Ethnic Differentiation and History in East Africa. Estella S.. Naciri. Yamama. Bucho. Rute. Niba. Régine. Kervaire. Barbara. Excoffier. Laurent. Langaney. André. Sanchez-Mazas. Alicia. Annals of Human Genetics. 73. 6. 582–600. 2488794.
- Pope. 2011. . 10.1139/G10-102. 21326367. AM. Carr. SM. Smith. KN. Marshall. HD. Mitogenomic and microsatellite variation in descendants of the founder population of Newfoundland: High genetic diversity in an historically isolated population. 54. 2. 110–9. Genome. Marshall. H. D..
- Quintana-Murci. 2004. . 10.1086/383236. Where West Meets East: The Complex mtDNA Landscape of the Southwest and Central Asian Corridor. Lluís. Chaix. Raphaëlle. Wells. R. Spencer. Behar. Doron M.. Sayar. Hamid. Scozzari. Rosaria. Rengo. Chiara. Al-Zahery. Nadia. Semino. Ornella. Santachiara-Benerecetti. A. Silvana. Coppa. Alfredo. Ayub. Qasim. Mohyuddin. Aisha. Tyler-Smith. Chris. Qasim Mehdi. S.. Torroni. Antonio. McElreavey. Ken. The American Journal of Human Genetics. 74. 5. 827–45. 15077202. 1181978. 8.
- . Rahman. Zia Ur. Tian. Jiao-Yang. Gao. Zong-Liang. Wang. Hao-Tian. Xia. Wang-Xiao. Yang. Bin-Yu. Yang. Li-Qin. Li. Yu-Chun. Kong. Qing-Peng. 2021. 10.1038/s41431-021-00829-6. Complete mitogenomes document substantial genetic contribution from the Eurasian Steppe into northern Pakistani Indo-Iranian speakers. European Journal of Human Genetics. 29. 6. 1008–1018. 33637889. 8187500 . free.
- Raule. 2014. . Nicola. Sevini. Federica. Li. Shengting. Barbieri. Annalaura. Tallaro. Federica. Lomartire. Laura. Vianello. Dario. Montesanto. Alberto. etal. The co-occurrence of mtDNA mutations on different oxidative phosphorylation subunits, not detected by haplogroup analysis, affects human longevity and is population specific. Aging Cell. 13. 3. 401–407. 10.1111/acel.12186 . 24341918. 4326891 .
- Richards. 2000. none. 10.1016/S0002-9297(07)62954-1. Tracing European Founder Lineages in the Near Eastern mtDNA Pool. Martin. MacAulay. Vincent. Hickey. Eileen. Vega. Emilce. Sykes. Bryan. Guida. Valentina. Rengo. Chiara. Sellitto. Daniele. Cruciani. Fulvio. Kivisild. Toomas. Villems. Richard. Thomas. Mark. Rychkov. Serge. Rychkov. Oksana. Rychkov. Yuri. Gölge. Mukaddes. Dimitrov. Dimitar. Hill. Emmeline. Bradley. Dan. Romano. Valentino. Calì. Francesco. Vona. Giuseppe. Demaine. Andrew. Papiha. Surinder. Triantaphyllidis. Costas. Stefanescu. Gheorghe. Hatina. Jiři. Belledi. Michele. Di Rienzo. Anna. Novelletto. Andrea. The American Journal of Human Genetics. 67. 5. 1251–76. 11032788. 1288566. 8.
- Richards. 2003. none. 10.1086/374384. Extensive Female-Mediated Gene Flow from Sub-Saharan Africa into Near Eastern Arab Populations. Martin. Rengo. Chiara. Cruciani. Fulvio. Gratrix. Fiona. Wilson. James F.. Scozzari. Rosaria. MacAulay. Vincent. Torroni. Antonio. The American Journal of Human Genetics. 72. 4. 1058–64. 12629598. 1180338.
- . Schönberg. Anna. Theunert. Christoph. Li. Mingkun. Stoneking. Mark. Nasidze. Ivan. 2011. High-throughput sequencing of complete human mtDNA genomes from the Caucasus and West Asia: high diversity and demographic inferences. European Journal of Human Genetics. 19. 988–994. 10.1038/ejhg.2011.62. 3179362.
- . Sharma. Indu. Sharma. Varun. Khan. Akbar. Kumar. Parvinder. Rai. Ekta. Rameshwar. N. K. Bamezai. Vilar. Miguel. Sharma. Swarkar. 2018. Ancient Human Migrations to and through Jammu Kashmir-India were not of Males Exclusively. Scientific Reports. 8. 1 . 851. 29339819. 10.1038/s41598-017-18893-8. 5770440 . 2018NatSR...8..851S . free.
- Shlush. 2008. . 10.1371/journal.pone.0002105. The Druze: A Population Genetic Refugium of the Near East. Gemmell. Neil John. Liran I.. Behar. Doron M.. Yudkovsky. Guennady. Templeton. Alan. Hadid. Yarin. Basis. Fuad. Hammer. Michael. Itzkovitz. Shalev. Skorecki. Karl. PLOS ONE. 3. 5. e2105. 18461126. 2324201. 2008PLoSO...3.2105S. free.
- Soares. 2011. . 10.1093/molbev/msr245. The Expansion of mtDNA Haplogroup L3 within and out of Africa. P.. Alshamali. F.. Pereira. J. B.. Fernandes. V.. Silva. N. M.. Afonso. C.. Costa. M. D.. Musilova. E.. MacAulay. V.. Richards. M. B.. Cerny. V.. Pereira. L.. Molecular Biology and Evolution. 29. 3. 915–27. 22096215. 8. free.
- . Stevanovitch. A.. Gilles. A.. Bouzaid. R. Kefi. F. Paris, R. P. . Gayraud, J. L. . Spadoni, F. . El-Chenawi, E. . Béraud-Colomb. Mitochondrial DNA Sequence Diversity in a Sedentary Population from Egypt. Annals of Human Genetics. January 2004. 68. 1. 23–39. 10.1046/j.1529-8817.2003.00057.x. 14748828. 44901197.
- Terreros. 2011. . 10.1038/jhg.2010.174. Mitochondrial DNA and Y-chromosomal stratification in Iran: Relationship between Iran and the Arabian Peninsula. Maria C. Rowold. Diane J. Mirabal. Sheyla. Herrera. Rene J. Journal of Human Genetics. 56. 3. 235–46. 21326310. free.
- Tishkoff. 2007. . 10.1093/molbev/msm155. 17656633. History of Click-Speaking Populations of Africa Inferred from mtDNA and Y Chromosome Genetic Variation. S. A.. Gonder. M. K.. Henn. B. M.. Mortensen. H.. Knight. A.. Gignoux. C.. Fernandopulle. N.. Lema. G.. Nyambo. T. B.. Ramakrishnan. U.. Reed. F. A.. Mountain. J. L.. Molecular Biology and Evolution. 24. 10. 2180–95. 8. free.
- Topf. 2005. none. 10.1093/molbev/msj013. Tracing the Phylogeography of Human Populations in Britain Based on 4th-11th Century mtDNA Genotypes. A. L.. Molecular Biology and Evolution. 23. 152–61. 16151183. Gilbert. MT. Dumbacher. JP. Hoelzel. AR. 1. free.
- Torroni. 1996. . Classification of European mtDNAs From an Analysis of Three European Populations. Genetics. 8978068. A. Huoponen. K. Francalacci. P. Petrozzi. M. Morelli. L. Scozzari. R. Obinu. D. Savontaus. ML. Wallace. DC. 144. 4. 1835–50. 10.1093/genetics/144.4.1835. 1207732.
- van Oven. 2009. none. 10.1002/humu.20921. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Mannis. Kayser. Manfred. Human Mutation. 30. 2. E386–94. 18853457. 27566749. free.
- . Vyas. Deven. Kitchen. Andrew. Miró-Herrans. Aida. Pearson. Laurel N.. Al-Meeri. Ali. Mulligan. Connie J.. 2016. Bayesian analyses of Yemeni mitochondrial genomes suggest multiple migration events with Africa and Western Eurasia. American Journal of Physical Anthropology. 159. 3. 382–393. 26567083. 10.1002/ajpa.22890.
Books
- Book: . Brook . Kevin Alan . Cooper . Leo R. . Wexler . Jeffrey D. . Lipson . Joshua . Stern . Jonah A. . 2022 . The Maternal Genetic Lineages of Ashkenazic Jews . Boston . Academic Studies Press . 978-1644699843 . 10.2307/j.ctv33mgbcn. 254519342 .
Websites
- Web site: Behar. Family Tree DNA. 2012. mtDNA Community. 2013-01-07. 2018-01-02. https://web.archive.org/web/20180102091357/http://www.mtdnacommunity.org/human-mtdna-phylogeny.aspx. dead.
Further reading
- Černý. 2009. . 10.1002/ajpa.20960. Out of Arabia-The settlement of Island Soqotra as revealed by mitochondrial and Y chromosome genetic diversity. Viktor. Pereira. Luísa. Kujanová. Martina. VašÍková. Alžběta. Hájek. Martin. Morris. Miranda. Mulligan. Connie J.. American Journal of Physical Anthropology. 138. 4. 439–47. 19012329.
- Book: Fellner. 1995. 9780860547754. Robert O. Cultural change and the epipalaeolithic of Palestine. Tempus Reparatum.
- Kitchen. 2009. 10.1098/rspb.2009.0408. Bayesian phylogenetic analysis of Semitic languages identifies an Early Bronze Age origin of Semitic in the Near East. A.. Ehret. C.. Assefa. S.. Mulligan. C. J.. Proceedings of the Royal Society B: Biological Sciences. 276. 1668. 2703–10. 19403539. 2839953.
- Petit-Maire. 2000. 10.18814/epiiugs/2000/v23i4/001. Geological records of the recent past, a key to the near future world environments. Nicole. Episodes. 23. 4. 230–246. Bouysse. Philippe. free.
External links
Notes and References
- Web site: Non. Amy. ANALYSES OF GENETIC DATA WITHIN AN INTERDISCIPLINARY FRAMEWORK TO INVESTIGATE RECENT HUMAN EVOLUTIONARY HISTORY AND COMPLEX DISEASE. University of Florida. 12 April 2016. 13 October 2020. https://web.archive.org/web/20201013000218/http://etd.fcla.edu/UF/UFE0041981/non_a.pdf. dead.
- Nikitin 2009: 6/53 in Lemkos
"Lemkos shared the highest frequency of haplogroup I ever reported and the highest frequency of haplogroup M* in the region."
15/133
- Rabab Khairat . Markus Ball . Chun-Chi Hsieh Chang . Raffaella Bianucci . Andreas G. Nerlich . Martin Trautmann . Somaia Ismail . First insights into the metagenome of Egyptian mummies using next-generation sequencing. Journal of Applied Genetics. 4 April 2013. 10.1007/s13353-013-0145-1. 23553074 . 8 June 2016. etal. 54. 3 . 309–325. 5459033 .
- Schuenemann, Verena J.. etal. Ancient Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-Roman periods. Nature Communications. 2017. 8. 15694. 28556824. 10.1038/ncomms15694. 5459999. 2017NatCo...815694S.
- Sirak, Kendra . Frenandes, Daniel . Novak, Mario . Van Gerven, Dennis . Pinhasi, Ron. Abstract Book of the IUAES Inter-Congress 2016 - A community divided? Revealing the community genome(s) of Medieval Kulubnarti using next- generation sequencing. Abstract Book of the Iuaes Inter-Congress 2016 . 2016. 115–116 . IUAES.