Haplogroup C (mtDNA) explained

C
Map:Map-of-human-migrations.jpg
Origin-Date:36,473.3 (SD 7392.0) years[1]
Origin-Place:East Asia[2]
Ancestor:CZ
Tmrca:27,370 (95% CI 19,550 <-> 35,440) ybp
23,912.2(SD 4780.8) years
21,700 (95% CI 19,200 <-> 24,400) ybp
Descendants:C1, C4, C5, C7
Mutations:489 10400 14783 15043[3]

In human mitochondrial genetics, Haplogroup C is a human mitochondrial DNA (mtDNA) haplogroup.

Origin

Haplogroup C is believed to have arisen in East Asia some 24,000 years before present. It is a descendant of the haplogroup M. Haplogroup C shares six mutations downstream of the MRCA of haplogroup M with haplogroup Z and five mutations downstream of the MRCA of haplogroup M with other members of haplogroup M8. This macro-haplogroup is known as haplogroup M8'CZ or simply as haplogroup M8.

Distribution

Haplogroup C is found in Northeast Asia[4] (including Siberia) and the Americas. In Eurasia, Haplogroup C is especially frequent among populations of arctic Siberia, such as Nganasans, Dolgans, Yakuts, Evenks, Evens, Yukaghirs, and Koryaks.[5] [6] Haplogroup C is one of five mtDNA haplogroups found in the indigenous peoples of the Americas,[4] the others being A, B, D, and X. The subclades C1b, C1c, C1d, and C4c are found in the first people of the Americas. C1a is found only in Asia.

In 2010, Icelandic researchers discovered C1e lineage in their home country, estimating an introduction date of year 1700 AD or earlier, indicating a possible introduction during the Viking expeditions to the Americas. A Native American origin for this C1e lineage is likely, but the researchers note that a European or Asian one cannot be ruled out.[7] [8] [9]

In 2014, a study discovered a new mtDNA subclade C1f from the remains of 3 people found in north-western Russia and dated to 7,500 years ago. It has not been detected in modern populations. The study proposed the hypothesis that the sister C1e and C1f subclades had split early from the most recent common ancestor of the C1 clade and had evolved independently. Subclade C1e had a northern European origin. Iceland was settled by the Vikings 1,130 years ago and they had raided heavily into western Russia, where the sister subclade C1f is now known to have resided. They proposed that both subclades were brought to Iceland through the Vikings, however C1e went extinct on mainland northern Europe due to population turnover and its small representation, and subclade C1f went extinct completely.[10]

In 2015, a study conducted in the Aconcagua mummy identified its mtDNA lineage belongs to the subclade C1bi, which contains 10 distinct mutations from C1b.

Table of Frequencies by ethnic group

PopulationFrequencyCountSourceSubtypes
Evenks (Stony Tunguska)0.76939C4a2=7, C4a1c=6, C4b1=5, C5d1=4, C4b=3, C4b3=3, C4a1c1a=1, C5b1b=1
Evenk0.71871C(xC1, C5)=41, C5=10
Yukaghir0.670100C(xC1, C5)=54, C5=13
Evenk (East)0.64445C(xC1, C5)=17, C5=12
Tofalar0.62158C(xC1, C5)=31, C5=5
Evens (Sebjan)0.55618C4b=6, C4a1c=3, C5b1b=1
Yukaghirs0.55020C4a1c=4, C4b3a=2, C4b7=2, C4a2=1, C5a2=1, C5d1=1
Yukaghirs (Yakutia)0.54522C4b3a=5, C5d1=3, C4a1c=1, C4a2=1, C4b1=1, C5a2a=1
Evens (Tompo)0.51927C4a1c=6, C4a2=3, C4b=2, C4b1=2, C5d1=1
Nganasans0.51339C(xC1, C5)=12, C5=8
Tozhu Tuvans0.47948C(xC1, C5)=16, C5=7
Evenks (Yakutia)0.472125C4b1=13, C4a1c=11, C4b9=9, C4a2=8, C4b=5, C5b1b=4, C5a2=3, C5d1=2, C4a1=1, C4a1d=1, C4b3a=1, C5a1=1
Tuvans0.472231C(xC1, C5)=88, C5=21
Yakut0.469254C(xC1, C5)=95, C5=24
Evens (Berezovka)0.46715C4b3a=4, C4b=1, C4b1=1, C4b7=1
Evenk (West)0.46673C(xC1, C5)=29, C5=5
Evenks (Taimyr)0.45824C4a1c=5, C4b1=4, C4a1c1a=1, C4a2=1
Yakut (Central)0.457164C4a1c=16, C4a2=14, C5b1b=13, C4b1=8, C4a1d=7, C4b=4, C4b1a=3, C5a1=3, C4a1=2, C5b1a=2, C4b3a=1, C5a2=1, C7a1c=1
Evens (Yakutia)0.457105C4a1c=15, C5d1=11, C4a2=4, C4b3a=3, C4b1=2, C4b7=2, C4b9=2, C4b=2, C5a1=2, C7a1c=2, C4b1a=1, C4b2=1, C5a2a=1
Evenks (Nyukzha)0.41346C4a2=10, C4b1=3, C4a1c=2, C4a1d=1, C4b1a=1, C5a2=1, C7a1c=1
Yakut (Northern)0.405148C4a1c=17, C4b1=16, C4a2=11, C5b1a=4, C5b1b=4, C4b9=3, C4b=2, C5a1=2, C5d1=1
Koryaks0.40015C4b=3, C5a2=3
Dolgans0.390154C4a1c=33, C4b1=9, C5b1b=5, C4b3a=3, C4a2=2, C4b1a=2, C5b1a=2, C4b8=1, C4b=1, C5d1=1, C7a1c=1
Even0.377191C(xC1, C5)=50, C5=22
Koryak0.368182C(xC1, C5)=39, C5=28
Yakut (Vilyuy)0.360111C4a1c=14, C4a2=10, C4b=5, C4b1=4, C4b1a=2, C5a2=2, C5b1b=2, C4a1=1
Evens (Kamchatka)0.33339C4b1=6, C4b3a=3, C4a1c=2, C5a2=1, C5d1=1
Altai-Kizhi0.32290C(xC1, C5)=21, C5=8
Chuvantsi0.31332C(xC1, C5)=10
Oroqen0.29544C(xC1, C5)=9, C5=4
Teleut0.28353C(xC1, C5)=11, C5=4
Evens (Sakkyryyr)0.26123C4a1c=2, C4b=2, C4a1d=1, C4b1=1
Udegey0.22631C4b1=6, C4a1d=1
Mongolian (Ulaanbaatar)0.21347C=10
Buryat0.212419C(xC1, C5)=66, C1=3, C5=20
Khakassian0.208110C(xC1, C5)=28, C5=2
Barghut0.201149C4a1a1=6, C4a1a2=3, C4a1b2=3, C4a2a1=2, C4b1a=2, C4b1=2, C4=2, C5b=2, C4a1a=1, C4a1a1a2=1, C4a1a2a2=1, C4a2a2=1, C5a1=1, C5a2=1, C5b1a=1, C7=1
Tubalar0.19472C(xC1, C5)=12, C5=2
Altaian0.191110C(xC1, C5)=21
Evenks (Iengra)0.19021C4a2=2, C4b1=1, C5a2=1
Udege0.17446C(xC1, C5)=8
Mongolian (Ulaanbaatar)0.17047C4=4, C*(xC1,C4,C5)=3, C5=1
Telenghit0.16971C(xC1, C5)=10, C5=2
Mongolian0.153150C(xC1, C5)=18, C1=2, C5=3
Negidal0.15233C(xC1, C5)=3, C5=2
Kyrgyz (Kyzylsu)0.145138C=20
Kyrgyz0.140200C(xC1, C5)=18, C1=1, C5=9
Ulch0.13887C(xC1, C5)=6, C1=1, C5=5
Turkmen0.135178C(xC1, C5)=14, C5=10
Chukchi0.132417C(xC1, C5)=27 C5=28
Kazakh (Xinjiang)0.13253C(xC1, C5)=5 C5=2
Itelmen0.13046C5=6
Shor0.12282C(xC1, C5)=9 C5=1
Orok0.11561C1=7
Kyrgyz (Taxkorgan)0.10368C4=6, C5=1
Thai0.10040C=4
Nanai0.09485C(xC1, C5)=5, C1=1, C5=2
Kazakh0.086511C(xC1, C5)=32, C1=4, C5=8
Mongolian (Inner Mongolia)0.08397C(xC1, C5)=5
Altaian (Kazakhstan)0.08298C(xC1, C5)=8
Kyrgyz (Artux)0.07454C4=4
Tajik0.07382C(xC1, C5)=6
Sarikoli0.07086C4a1a+A14878G=2, C4a1=2, C4b1=1, C4+T152C!+T4742C+T8602C=1
Daur0.06645C(xC1, C5)=2, C1=1
Uyghur (Xinjiang)0.06447C(xC1, C5)=3
Uzbek0.061130C(xC1, C5)=6, C5=2
Vietnamese0.04842C=2
Han Chinese0.0451930C(xC1, C5)=72, C5=15
Thai0.034552C(xC1, C5)=19
Korean (mostly Ulsan)0.0301094C=33
Manchu0.02540C=1
Korean0.024694C=17
Korean (China)0.02051C=1
Korean (Korea)0.016185C=3
Korean0.015537C5=4, C(xC1,C5)=4
Korean0.010103C(xC1,C4,C5)=1
Eskimo0.008254C(xC1, C5)=2
Japanese0.0051312C1=4, C5=1, C(xC1,C5)=1
Japanese (Tokyo)0.000118-
Ainu0.00051-
Nivkh0.00038-
Han (Beijing)0.00040-
Nivkh0.00056-

Subclades

Tree

This phylogenetic tree of haplogroup C subclades is based on the paper by Mannis van Oven and Manfred Kayser Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation and subsequent published research.

Popular culture

See also

Bibliography

External links

Notes and References

  1. Behar et al., 2012b
  2. Derenko . Miroslava . Malyarchuk . Boris . Grzybowski . Tomasz . Denisova . Galina . Rogalla . Urszula . Perkova . Maria . Dambueva . Irina . Zakharov . Ilia . Origin and Post-Glacial Dispersal of Mitochondrial DNA Haplogroups C and D in Northern Asia . PLOS ONE . 2010 . 5 . 12 . e15214 . 10.1371/journal.pone.0015214 . 21203537 . 3006427 . 2010PLoSO...515214D . en . 1932-6203. free . "More than a half of the northern Asian pool of mtDNA is fragmented into a number of subclades of haplogroups C and D, two of the most frequent haplogroups throughout northern, eastern, central Asia and America. Previous studies have proposed that haplogroups C and D originated around 30–50 kya in eastern Asia, from where they subsequently expanded northwards to southern Siberia, and further deep into northern Asia and the Americas, and westwards along the Steppe Belt extending from Manchuria to Europe [14], [15]. It has been also shown that haplogroups C and D were strongly involved in the late-glacial expansions from southern China to northeastern India [16]. In addition, because of their high frequency and wide distribution, haplogroups C and D most likely participated in all subsequent episodes of putative gene flow in northern Eurasia. These include (i) the Paleolithic colonization of Siberia that is associated with the development of macroblade industries (40–30 kya), (ii) further recolonization and possible replacement of early Siberians by microblade-making human populations from the Lake Baikal, Yenisei River, and Lena River basin regions (20 kya), (iii) appearance of pottery-making Neolithic tradition in the forest-steppe belt of northern Eurasia starting at about 14.5 kya and its expanding into the East European Plane (7 kya), (iv) the Neolithic dispersal of agriculture in eastern Asia, (v) the expansion of the Afanasievo and Andronovo cultures (5–3 kya), and (vi) more recent events of gene flow to eastern and central Europe."
  3. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Human Mutation. 13 Oct 2008. Mannis. van Oven. Manfred Kayser. 30. 2. E386–E394. 18853457. 10.1002/humu.20921. 27566749. free.
  4. http://www.ianlogan.co.uk/discussion/hap_C.htm Haplogroup C.
  5. Volodko . Natalia V. . Starikovskaya . Elena B. . Mazunin . Ilya O. . etal . 2008. Mitochondrial Genome Diversity in Arctic Siberians, with Particular Reference to the Evolutionary History of Beringia and Pleistocenic Peopling of the Americas . The American Journal of Human Genetics . 82 . 5. 1084–1100 . 10.1016/j.ajhg.2008.03.019 . 2427195 . 18452887.
  6. . Fedorova . Sardana A . Reidla . Maere . Metspalu . Ene . etal . 2013. Autosomal and uniparental portraits of the native populations of Sakha (Yakutia): implications for the peopling of Northeast Eurasia . BMC Evolutionary Biology . 2013 . 13. 127 . 10.1186/1471-2148-13-127. 23782551 . 3695835 . 2013BMCEE..13..127F . free .
  7. 10.1002/ajpa.21419 . 21069749 . 144 . 1 . A new subclade of mtDNA haplogroup C1 found in icelanders: Evidence of pre-columbian contact? . 2010 . American Journal of Physical Anthropology . 92–99 . Sunna Ebenesersdóttir . Sigríður.
  8. https://phys.org/news/2010-11-vikings-brought-amerindian-iceland-years.html Vikings brought Amerindian to Iceland 1,000 years ago: study
  9. https://www.telegraph.co.uk/news/science/science-news/8138884/First-Americans-reached-Europe-five-centuries-before-Columbus-voyages.html First Americans 'reached Europe five centuries before Columbus voyages'
  10. 10.1371/journal.pone.0087612. 24503968. Mitochondrial Genome Sequencing in Mesolithic North East Europe Unearths a New Sub-Clade within the Broadly Distributed Human Haplogroup C1. PLOS ONE. 9. 2. e87612. 2014. Der Sarkissian. Clio. Brotherton. Paul. Balanovsky. Oleg. Templeton. Jennifer E. L.. Llamas. Bastien. Soubrier. Julien. Moiseyev. Vyacheslav. Khartanovich. Valery. Cooper. Alan. Haak. Wolfgang. 3913659. 2014PLoSO...987612D. free.
  11. Filipa Simão, Christina Strobl, Carlos Vullo, et al., "The maternal inheritance of Alto Paraná revealed by full mitogenome sequences." FSI Genetics Volume 39, P66-72, March 01, 2019. Published online December 19, 2018. DOI:https://doi.org/10.1016/j.fsigen.2018.12.007
  12. Starikovskaya, E.B., Sukernik, R.I., Derbeneva, O.A., Volodko, N.V., Ruiz-Pesini, E., Torroni, A., Brown, M.D., Lott, M.T., Hosseini, S.H., Huoponen, K. and Wallace, D.C., "Mitochondrial DNA diversity in indigenous populations of the southern extent of Siberia, and the origins of Native American haplogroups." Annals of Human Genetics 69 (PT 1), 67-89 (2005).
  13. Ingman . M. . Gyllensten . U. . 2007 . Rate variation between mitochondrial domains and adaptive evolution in humans . Human Molecular Genetics. 16 . 19. 2281–2287 . 10.1093/hmg/ddm180. 17617636 . free .
  14. Sebastian Lippold . etal . 2014 . Human paternal and maternal demographic histories: insights from high-resolution Y chromosome and mtDNA sequences . 10.1101/001792.
  15. Guang‐Lin He, Meng‐Ge Wang, Xing Zou, Hui‐Yuan Yeh, Chang‐Hui Liu, Chao Liu, Gang Chen, and Chuan‐Chao Wang. Extensive ethnolinguistic diversity at the crossroads of North China and South Siberia reflects multiple sources of genetic diversity[J]. J Syst Evol, 2023, 61(1): 230-250.
  16. . Derenko . Miroslava . Malyarchuk . Boris . Grzybowski . Tomasz . etal . 2007 . Phylogeographic Analysis of Mitochondrial DNA in Northern Asian Populations . Am. J. Hum. Genet. . 81 . 5. 1025–1041 . 10.1086/522933 . 17924343 . 2265662 .
  17. S. Kumar, C. Bellis, M. Zlojutro, et al., "Large scale mitochondrial sequencing in Mexican Americans suggests a reappraisal of Native American origins." BMC Evol. Biol. 11 (1), 293 (2011).
  18. R.S. Malhi, J.S. Cybulski, R.Y. Tito, et al., "Brief communication: Mitochondrial haplotype C4c confirmed as a founding genome in the Americas." Am. J. Phys. Anthropol. 141 (3), 494-497 (2010).
  19. U.A. Perego, N. Angerhofer, M. Pala, et al., "The initial peopling of the Americas: a growing number of founding mitochondrial genomes from Beringia." Genome Res. 20 (9), 1174-1179 (2010).
  20. https://www.yfull.com/mtree/C/ YFull MTree 1.02.7045 (as of January 11, 2021)
  21. Fu. Qiaomei. Posth. Cosimo. Hajdinjak. Mateja. Petr. Martin. Mallick. Swapan. Fernandes. Daniel. Furtwängler. Anja. Haak. Wolfgang. Meyer. Matthias. Mittnik. Alissa. Nickel. Birgit. June 2016. The genetic history of Ice Age Europe. Nature. en. 534. 7606. 200–205. 10.1038/nature17993. 27135931. 4943878. 1476-4687. 2016Natur.534..200F. 10211.3/198594.
  22. Kilinc, G.M., Kashuba, N., Yaka, R., Sumer, A.P., Yuncu, E., Shergin, D., Ivanov, G.L., Kichigin, D., Pestereva, K., Volkov, D., Mandryka, P., Kharinskii, A., Tishkin, A., Ineshin, E., Kovychev, E., Stepanov, A., Alekseev, A., Fedoseeva, S.A., Somel, M., Jakobsson, M., Krzewinska, M., Stora, J., and Gotherstrom, A., "Investigating Holocene human population history in North Asia using ancient mitogenomes." Sci Rep 8 (1), 8969 (2018)
  23. Derenko,M., Malyarchuk,B., Grzybowski,T., Denisova,G., Rogalla,U., Perkova,M., Dambueva,I., and Zakharov,I., "Origin and post-glacial dispersal of mitochondrial DNA haplogroups C and D in northern Asia." PLoS ONE 5 (12), E15214 (2010).
  24. 10.1038/s41431-017-0028-8. 29187735. 5839027. Mitochondrial genomes uncover the maternal history of the Pamir populations. European Journal of Human Genetics. 26. 1. 124–136. 2018. Peng. Min-Sheng. Xu. Weifang. Song. Jiao-Jiao. Chen. Xing. Sulaiman. Xierzhatijiang. Cai. Liuhong. Liu. He-Qun. Wu. Shi-Fang. Gao. Yun. Abdulloevich. Najmudinov Tojiddin. Afanasevna. Manilova Elena. Ibrohimovich. Khudoidodov Behruz. Chen. Xi. Yang. Wei-Kang. Wu. Miao. Li. Gui-Mei. Yang. Xing-Yan. Rakha. Allah. Yao. Yong-Gang. Upur. Halmurat. Zhang. Ya-Ping.
  25. Chandrasekar . A . Kumar . S . Sreenath . J . Sarkar . BN . Urade . BP . etal . 2009 . Updating Phylogeny of Mitochondrial DNA Macrohaplogroup M in India: Dispersal of Modern Human in South Asian Corridor . PLOS ONE . 4 . 10. e7447 . 10.1371/journal.pone.0007447 . 19823670 . 2757894 . 2009PLoSO...4.7447C . free .
  26. Mielnik-Sikorska . M . Daca . P . Malyarchuk . B . Derenko . M . Skonieczna . K . etal . 2013 . The History of Slavs Inferred from Complete Mitochondrial Genome Sequences . PLOS ONE . 8 . 1. e54360 . 10.1371/journal.pone.0054360 . 23342138 . 3544712 . 2013PLoSO...854360M . free .
  27. Malyarchuk,B., Derenko,M., Denisova,G., et al., "Whole mitochondrial genome diversity in two Hungarian populations." Mol. Genet. Genomics (2018).
  28. Duggan . AT . Whitten . M . Wiebe . V . Crawford . M . Butthof . A . etal . 2013 . Investigating the Prehistory of Tungusic Peoples of Siberia and the Amur-Ussuri Region with Complete mtDNA Genome Sequences and Y-chromosomal Markers . PLOS ONE . 8 . 12. e83570 . 10.1371/journal.pone.0083570 . 24349531 . 3861515 . 2013PLoSO...883570D . free .
  29. Rieux . Adrien . Eriksson . Anders . Li . Mingkun . etal . 2014. Improved Calibration of the Human Mitochondrial Clock Using Ancient Genomes . Mol Biol Evol . 31. 10. 2780–92. 10.1093/molbev/msu222 . 25100861 . 4166928 .
  30. . Derenko . M. V. . Grzybowski . T. . Malyarchuk . B. A. . Dambueva . I. K. . Denisova . G. A. . Czarny . J. . Dorzhu . C. M. . Kakpakov . V. T. . Miscicka-Sliwka . D. . Wozniak . M. . Zakharov . I. A. . Diversity of Mitochondrial DNA Lineages in South Siberia . Annals of Human Genetics . September 2003 . 67 . 5 . 391–411 . 10.1046/j.1469-1809.2003.00035.x. 12940914 . 28678003 .
  31. Dryomov, S.V., Starikovskaya, E.B., Nazhmidenova, A.M. et al. Genetic legacy of cultures indigenous to the Northeast Asian coast in mitochondrial genomes of nearly extinct maritime tribes. BMC Evol Biol 20, 83 (2020). https://doi.org/10.1186/s12862-020-01652-1
  32. Klunk, J., Duggan, A.T., Redfern, R., et al., "Genetic resiliency and the Black Death: No apparent loss of mitogenomic diversity due to the Black Death in medieval London and Denmark." Am. J. Phys. Anthropol. (2019).
  33. O. A. Derbeneva, E. B. Starikovskaya, N. V. Volodko, D. C. Wallace, and R. I. Sukernik, "Mitochondrial DNA Variation in the Kets and Nganasans and Its Implications for the Initial Peopling of Northern Eurasia." Russian Journal of Genetics, Vol. 38, No. 11, 2002, pp. 1316–1321. Translated from Genetika, Vol. 38, No. 11, 2002, pp. 1554–1560.
  34. Kristiina Tambets, Bayazit Yunusbayev, Georgi Hudjashov, et al., "Genes reveal traces of common recent demographic history for most of the Uralic-speaking populations." Genome Biology (2018) 19:139. https://doi.org/10.1186/s13059-018-1522-1
  35. Dryomov SV, Nazhmidenova AM, Starikovskaya EB, Shalaurova SA, Rohland N, Mallick S, et al. (2021), "Mitochondrial genome diversity on the Central Siberian Plateau with particular reference to the prehistory of northernmost Eurasia." PLoS ONE 16(1):e0244228.https://doi.org/10.1371/journal.pone.0244228
  36. Ingman . M. . Kaessmann . H. . Paabo . S. . Gyllensten . U. . 2000 . Mitochondrial genome variation and the origin of modern humans . Nature . 408 . 6813. 708–713 . 10.1038/35047064 . 11130070 . 2000Natur.408..708I . 52850476 .
  37. . Tamm . E . Kivisild . T . Reidla . M . Metspalu . M . Smith . DG . Mulligan . CJ . Bravi . CM . Rickards . O . Martinez-Labarga . C . Khusnutdinova . EK . Fedorova . SA . Golubenko . MV . Stepanov . VA . Gubina . MA . Zhadanov . SI . Ossipova . LP . Damba . L . Voevoda . MI . Dipierri . JE . Villems . R . Malhi . RS . 2007 . Beringian standstill and spread of Native American founders . PLOS ONE . 2 . 9. e829 . 10.1371/journal.pone.0000829 . 17786201 . 1952074. 2007PLoSO...2..829T . free .
  38. 10.1002/ajpa.23151. 28158897. Sex-specific genetic diversity is shaped by cultural factors in Inner Asian human populations. American Journal of Physical Anthropology. 162. 4. 627–640. 2017. Marchi. Nina. Hegay. Tatyana. Mennecier. Philippe. Georges. Myriam. Laurent. Romain. Whitten. Mark. Endicott. Philipp. Aldashev. Almaz. Dorzhu. Choduraa. Nasyrova. Firuza. Chichlo. Boris. Ségurel. Laure. Heyer. Evelyne.
  39. Malyarchuk,B., Litvinov,A., Derenko,M., Skonieczna,K., Grzybowski,T., Grosheva,A., Shneider,Y., Rychkov,S. and Zhukova,O., "Mitogenomic diversity in Russians and Poles." Forensic Sci Int Genet 30, 51-56 (2017).
  40. Derenko . M . Malyarchuk . B . Bahmanimehr . A . Denisova . G . Perkova . M . etal . 2013 . Complete Mitochondrial DNA Diversity in Iranians . PLOS ONE . 8 . 11. e80673 . 10.1371/journal.pone.0080673 . 24244704 . 3828245 . 2013PLoSO...880673D . free .
  41. Jiang,C., Cui,J., Liu,F., Gao,L., Luo,Y., Li,P., Guan,L. and Gao,Y., "Mitochondrial DNA 10609T Promotes Hypoxia-Induced Increase of Intracellular ROS and Is a Risk Factor of High Altitude Polycythemia." PLoS ONE 9 (1), E87775 (2014).
  42. Kutanan . Wibhu . Kampuansai . Jatupol . Srikummool . Metawee . Kangwanpong . Daoroong . Ghirotto . Silvia . Brunelli . Andrea . Stoneking . Mark . 2016 . Complete mitochondrial genomes of Thai and Lao populations indicate an ancient origin of Austroasiatic groups and demic diffusion in the spread of Tai–Kadai languages . Hum Genet . 136. 1. 85–98. 10.1007/s00439-016-1742-y . 27837350 . 5214972 . free .
  43. Fuyun Ji, Mark S. Sharpley, Olga Derbeneva, et al., "Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans." PNAS May 8, 2012 109 (19) 7391-7396; https://doi.org/10.1073/pnas.1202484109.
  44. Kutanan . Wibhu . Kampuansai . Jatupol . Changmai . Piya . etal . 2018 . Contrasting maternal and paternal genetic variation of hunter-gatherer groups in Thailand . Scientific Reports . 8 . 1. 1536 . 10.1038/s41598-018-20020-0 . 29367746 . 5784115 . 2018NatSR...8.1536K .
  45. . Kong . Q.P. . Yao . Y.G. . Sun . C. . Bandelt . H.J. . Zhu . C.L. . Zhang . Y.P. . 2003 . Phylogeny of east Asian mitochondrial DNA lineages inferred from complete sequences . Am. J. Hum. Genet. . 73 . 3. 671–676 . 10.1086/377718. 12870132 . 1180693 .
  46. Zhang,A.M., Bandelt,H.J., Jia,X., Zhang,W., Li,S., Yu,D., Wang,D., Zhuang,X.Y., Zhang,Q., and Yao,Y.G., "Is Mitochondrial tRNA Variant m.593T>C a Synergistically Pathogenic Mutation in Chinese LHON Families with m.11778G>A?" PLoS ONE 6 (10), E26511 (2011).
  47. Wang . C.Y. . Wang . H.W. . Yao . Y.G. . Kong . Q.P. . Zhang . Y.P. . 2007 . Somatic mutations of mitochondrial genome in early stage breast cancer . Int. J. Cancer . 121 . 6. 1253–1256 . 10.1002/ijc.22822. 17514652 . 36734968 . free .
  48. Book: Gates Jr., Henry Louis. 104. 2010. Faces of America: How 12 Extraordinary People Discovered Their Pasts. New York University Press.
  49. Finding Your Roots . PBS . 2012-05-20 . 1 . 10 . en.