Hans Peter Schlickewei Explained
Hans Peter Schlickewei (born 1947) is a German mathematician, specializing in number theory and, in particular, the theory of transcendental numbers.
Schlickewei received his doctorate in 1975 at the University of Freiburg under the supervision of Theodor Schneider. Schlickewei is a professor at the University of Marburg.[1]
He proved in 1976 the p-adic generalization of the subspace theorem of Wolfgang M. Schmidt.[2] Schlickewei's theorem implies the Thue-Siegel-Roth theorem, whose p-adic analogue was already proved in 1958 by David Ridout.[3]
In 1998, Schlickewei was an invited speaker with talk The Subspace Theorem and Applications at the International Congress of Mathematicians in Berlin.[4]
Selected publications
- Schlickewei, H. P.. Die p-adische Verallgemeinerung des Satzes von Thue-Siegel-Roth-Schmidt. J. Reine Angew. Math.. 1976. 288. 1976. 86–105. 10.1515/crll.1976.288.86. 115523021.
- Schinzel, A.. Andrzej Schinzel. Schlickewei, H.. Schmidt, W.. 1980. Small solutions of quadratic congruences and small fractional parts of quadratic forms. Acta Arithmetica. 37. 1. 241–248. 10.4064/aa-37-1-241-248. free.
- Schlickewei, H. P.. S-unit equations over number fields. Invent. Math.. 102. 1990. 95–107. 10.1007/BF01233421. 1990InMat.102...95S. 120614908.
- 10.1017/S144678870003336X. Additive relations in fields. Journal of the Australian Mathematical Society, Series A. 51. 154–170. 1991. Van Der Poorten. A. J.. Alfred van der Poorten. Schlickewei. H. P.. free.
- Schlickewei, H. P.. Multiplicities of algebraic linear recurrrences. Acta Mathematica. 170. 2. 1993. 151–180. 10.1007/BF02392784. free.
- Schlickewei, H. P.. Multiplicities of recurrence sequences. Acta Mathematica. 176. 2. 1996. 171–243. 10.1007/BF02551582. free.
- Schlickewei, H. P.. The multiplicity of binary recurrences. Invent. Math.. 129. 11. 1997. 11–36. 10.1007/s002220050156. 1997InMat.129...11S. 121677668.
- Schlickewei, H. P.. Schmidt, W. P.. The number of solutions of polynomial-exponential equations. Compositio Math.. 120. 2. 2000. 193–225. 10.1023/A:1001719425893. 123405472. free.
- 10.2307/3062133. 3062133. Linear Equations in Variables which Lie in a Multiplicative Group. The Annals of Mathematics. 155. 3. 807. 2002. Evertse. J.-H.. Schlickewei. H. P.. Schmidt. W. M.. math/0409604. 5727031.
- Approximation of algebraic numbers, pp. 107–170 in: D. Masser, Yu. V. Nesterenko, W. Schmidt, M. Waldschmidt (eds.): Diophantine Approximation, Lectures CIME Summer School 2000, Springer 2003
References
- Web site: Prof. Dr. Hans Peter Schlickewei. Philipps-Universität Marburg.
- Schlickewei . Hans Peter . On norm form equations . . 10.1016/0022-314X(77)90072-5 . 1977 . 9 . 3 . 370–380 . 0444562 .
- Ridout, David. The p-adic generalization of the Thue-Siegel-Roth theorem. Mathematika. 5. 1. 1958. 40–48. 10.1112/S0025579300001339.
- Book: Schlickewei, Hans Peter. The subspace theorem and applications. In: Proceedings of the International Congress of Mathematicians, 1998, Berlin. 2. 197–205. 1998. https://www.elibm.org/ft/10011655000.
External links