Chapman–Robbins bound explained
In statistics, the Chapman–Robbins bound or Hammersley–Chapman–Robbins bound is a lower bound on the variance of estimators of a deterministic parameter. It is a generalization of the Cramér–Rao bound; compared to the Cramér–Rao bound, it is both tighter and applicable to a wider range of problems. However, it is usually more difficult to compute.
The bound was independently discovered by John Hammersley in 1950, and by Douglas Chapman and Herbert Robbins in 1951.
Statement
Let
be the set of parameters for a family of probability distributions
\{\mu\theta:\theta\in\Theta\}
on
.
For any two
, let
be the
-divergence from
to
. Then:
A generalization to the multivariable case is:
Proof
By the variational representation of chi-squared divergence:[1] Plug in
g=\hatg,P=\mu\theta',Q=\mu\theta
, to obtain:
Switch the denominator and the left side and take supremum over
to obtain the single-variate case. For the multivariate case, we define
for any
. Then plug in
in the variational representation to obtain:
Take supremum over
, using the linear algebra fact that
, we obtain the multivariate case.
Relation to Cramér–Rao bound
Usually,
is the sample space of
independent draws of a
-valued random variable
with distribution
from a by
\theta\in\Theta\subseteqRm
parameterized family of probability distributions,
is its
-fold product measure, and
is an estimator of
. Then, for
, the expression inside the supremum in the Chapman–Robbins bound converges to the
Cramér–Rao bound of
when
, assuming the regularity conditions of the Cramér–Rao bound hold. This implies that, when both bounds exist, the Chapman–Robbins version is always at least as tight as the Cramér–Rao bound; in many cases, it is substantially tighter.
The Chapman–Robbins bound also holds under much weaker regularity conditions. For example, no assumption is made regarding differentiability of the probability density function p(x; θ) of
. When
p(
x;
θ) is non-differentiable, the
Fisher information is not defined, and hence the Cramér–Rao bound does not exist.
See also
Notes and References
- Web site: Polyanskiy . Yury . 2017 . Lecture notes on information theory, chapter 29, ECE563 (UIUC) . live . https://web.archive.org/web/20220524014051/https://people.lids.mit.edu/yp/homepage/data/LN_stats.pdf . 2022-05-24 . 2022-05-24 . Lecture notes on information theory.