Hamiltonian fluid mechanics explained
Hamiltonian fluid mechanics is the application of Hamiltonian methods to fluid mechanics. Note that this formalism only applies to nondissipative fluids.
Irrotational barotropic flow
Take the simple example of a barotropic, inviscid vorticity-free fluid.
Then, the conjugate fields are the mass density field ρ and the velocity potential φ. The Poisson bracket is given by
\{\rho(\vec{y}),\varphi(\vec{x})\}=\deltad(\vec{x}-\vec{y})
and the Hamiltonian by:
H=\intddxl{H}=\intddx\left(
\rho(\nabla\varphi)2+e(\rho)\right),
where e is the internal energy density, as a function of ρ. For this barotropic flow, the internal energy is related to the pressure p by:
where an apostrophe ('), denotes differentiation with respect to ρ.
This Hamiltonian structure gives rise to the following two equations of motion:
}= -\nabla \cdot(\rho\vec), \\ \frac&=-\frac=-\frac\vec\cdot\vec-e',\end
where
}\ \nabla \varphi is the velocity and is
vorticity-free. The second equation leads to the Euler equations:
} + (\vec\cdot\nabla) \vec = -e
\nabla\rho = -\frac\nablaafter exploiting the fact that the vorticity is zero:
\nabla x \vec{u}=\vec{0}.
As fluid dynamics is described by non-canonical dynamics, which possess an infinite amount of Casimir invariants, an alternative formulation of Hamiltonian formulation of fluid dynamics can be introduced through the use of Nambu mechanics
See also
References
- Book: 978-3-319-59694-5 . Badin. Gualtiero. Crisciani. Fulvio. Variational Formulation of Fluid and Geophysical Fluid Dynamics - Mechanics, Symmetries and Conservation Laws - . Springer. 2018 . 218 . 10.1007/978-3-319-59695-2. 2018vffg.book.....B . 125902566.
- Encyclopedia: Encyclopedia of Mathematical Physics. 2 . 593–600. 2006. Hamiltonian Fluid Mechanics . P.J. . Morrison. Elsevier. Amsterdam.
- Morrison. P. J.. Hamiltonian Description of the Ideal Fluid . Reviews of Modern Physics. 70. 2. April 1998 . 467–521. Austin, Texas. 1998RvMP...70..467M. 10.1103/RevModPhys.70.467. 2152/61087. free.
- Annual Review of Fluid Mechanics . 20 . 225–256 . 1988 . 10.1146/annurev.fl.20.010188.001301 . Hamiltonian Fluid Mechanics . R. Salmon. 1988AnRFM..20..225S .
- Book: Shepherd. Theodore G. Advances in Geophysics Volume 32. Ted Shepherd. Symmetries, Conservation Laws, and Hamiltonian Structure in Geophysical Fluid Dynamics. 32. 1990. 287–338. 10.1016/S0065-2687(08)60429-X. 1990AdGeo..32..287S. 9780120188321.
- Book: Swaters, Gordon E.. 1-58488-023-6 . Introduction to Hamiltonian Fluid Dynamics and Stability Theory . Chapman & Hall/CRC. 2000 . 274. Boca Raton, Florida.
- P. . Nevir . R. . Blender . A Nambu representation of incompressible hydrodynamics using helicity and enstrophy . . 26 . 22 . 1993 . 1189–1193 . 10.1088/0305-4470/26/22/010 . 1993JPhA...26L1189N .
- R. . Blender . G. . Badin . Hydrodynamic Nambu mechanics derived by geometric constraints . . 48 . 10 . 2015 . 105501 . 10.1088/1751-8113/48/10/105501. 1510.04832 . 2015JPhA...48j5501B . 119661148 .