Hall–Higman theorem explained

In mathematical group theory, the Hall - Higman theorem, due to, describes the possibilities for the minimal polynomial of an element of prime power order for a representation of a p-solvable group.

Statement

Suppose that G is a p-solvable group with no normal p-subgroups, acting faithfully on a vector space over a field of characteristic p. If x is an element of order pn of G then the minimal polynomial is of the form (X - 1)r for some r ≤ pn. The Hall - Higman theorem states that one of the following 3 possibilities holds:

Examples

The group SL2(F3) is 3-solvable (in fact solvable) and has an obvious 2-dimensional representation over a field of characteristic p=3, in which the elements of order 3 have minimal polynomial (X-1)2 with r=3-1.