T
X1,...,Xn
X1,...,Xn
T
Given a random variable
T
X1,...,Xn
\hat{T}
T
\{X1,...,Xn\}
\hat{T}=\operatorname{E}(T)+
n | |
\sum | |
i=1 |
\left[\operatorname{E}(T\midXi)-\operatorname{E}(T)\right]
n | |
= \sum | |
i=1 |
\operatorname{E}(T\midXi)-(n-1)\operatorname{E}(T)
\hat{T}
L2
T
n | |
\sum | |
i=1 |
gi(Xi)
d | |
g | |
i:R |
\toR
2(X | |
\operatorname{E}(g | |
i))<infty |
i=1,...,n
\operatorname{E}(\hat{T}\midXi)=\operatorname{E}(T\midXi)
\operatorname{E}(\hat{T})=\operatorname{E}(T)
Tn=Tn(X1,...,Xn)
\hat{T}n=\hat{T}n(X1,...,Xn)
\operatorname{Var}(Tn)/\operatorname{Var}(\hat{T}n)\to1
Tn-\operatorname{E | |
(T |
n)}{\sqrt{\operatorname{Var}(Tn)}}-
\hat{T | |
n-\operatorname{E}(\hat{T} |
n)}{\sqrt{\operatorname{Var}(\hat{T}n)}}