(X,\Sigma)
\mu
\sigma
\Sigma
\Sigma
P
N
X
P\cupN=X
P\capN=\varnothing
E\in\Sigma
E\subseteqP
\mu(E)\geq0
P
\mu
E\in\Sigma
E\subseteqN
\mu(E)\leq0
N
\mu
Moreover, this decomposition is essentially unique, meaning that for any other pair
(P',N')
\Sigma
X
P\triangleP'
N\triangleN'
\mu
\Sigma
(P,N)
\mu
A consequence of the Hahn decomposition theorem is the , which states that every signed measure
\mu
\Sigma
\mu=\mu+-\mu-
\mu+
\mu-
{\mu+
\Sigma
E\subseteqN
{\mu-
\Sigma
E\subseteqP
(P,N)
\mu
\mu+
\mu-
\mu
(\mu+,\mu-)
\mu
{\mu+
for every
E\in\Sigma
(P,N)
\mu
Note that the Jordan decomposition is unique, while the Hahn decomposition is only essentially unique.
The Jordan decomposition has the following corollary: Given a Jordan decomposition
(\mu+,\mu-)
\mu
{\mu+
for any
E
\Sigma
\mu=\nu+-\nu-
(\nu+,\nu-)
X
\nu+\geq\mu+ and \nu-\geq\mu-.
The last expression means that the Jordan decomposition is the minimal decomposition of
\mu
Proof of the Jordan decomposition: For an elementary proof of the existence, uniqueness, and minimality of the Jordan measure decomposition see Fischer (2012).
Preparation: Assume that
\mu
-infty
-\mu
A\in\Sigma
\mu(B)\leq0
\Sigma
B\subseteqA
Claim: Suppose that
D\in\Sigma
\mu(D)\leq0
A\subseteqD
\mu(A)\leq\mu(D)
Proof of the claim: Define
A0:=D
n\inN0
An\subseteqD
tn:=\sup(\{\mu(B)\midB\in\Sigma~and~B\subseteqAn\})
denote the supremum of
\mu(B)
\Sigma
B
An
\varnothing
B
tn
\mu(\varnothing)=0
tn\geq0
tn
\Sigma
Bn\subseteqAn
\mu(Bn)\geqmin\left(1,
tn | |
2 |
\right).
Set
An:=An\setminusBn
A:=D\backslash
infty | |
cup | |
n=0 |
Bn.
As the sets
(Bn
infty | |
) | |
n=0 |
D
\mu
\mu(D)=\mu(A)+
infty | |
\sum | |
n=0 |
\mu(Bn)\geq\mu(A)+
infty | |
\sum | |
n=0 |
min\left(1,
tn | |
2 |
\right)\geq\mu(A).
This shows that
\mu(A)\leq\mu(D)
A
\Sigma
B\subseteqA
\mu(B)>0
tn\geq\mu(B)
n\inN0
+infty
\mu(D)=+infty
\mu(D)\leq0
A
Construction of the decomposition: Set
N0=\varnothing
Nn
sn:=inf(\{\mu(D)\midD\in\Sigma~and~D\subseteqX\setminusNn\}).
as the infimum of
\mu(D)
\Sigma
D
X\setminusNn
-infty
\varnothing
D
sn
\mu(\varnothing)=0
sn\leq0
\Sigma
Dn\subseteqX\setminusNn
\mu(Dn)\leqmax\left(
sn | |
2 |
,-1\right)\leq0.
By the claim above, there is a negative set
An\subseteqDn
\mu(An)\leq\mu(Dn)
Nn:=Nn\cupAn
N:=
infty | |
cup | |
n=0 |
An.
As the sets
(An
infty | |
) | |
n=0 |
\Sigma
B\subseteqN
\mu(B)=
infty | |
\sum | |
n=0 |
\mu(B\capAn)
by the sigma additivity of
\mu
N
P:=X\setminusN
P
\Sigma
D\subseteqP
\mu(D)<0
sn\leq\mu(D)
n\inN0
\mu(N)=
infty | |
\sum | |
n=0 |
\mu(An)\leq
infty | |
\sum | |
n=0 |
max\left(
sn | |
2 |
,-1\right)=-infty,
which is not allowed for
\mu
P
Proof of the uniqueness statement:Suppose that
(N',P')
X
P\capN'
N\capP'
P\triangleP'=N\triangleN'=(P\capN')\cup(N\capP'),
this completes the proof. Q.E.D.