In mathematics, a Haefliger structure on a topological space is a generalization of a foliation of a manifold, introduced by André Haefliger in 1970.[1] [2] Any foliation on a manifold induces a special kind of Haefliger structure, which uniquely determines the foliation.
A codimension-
q
X
X
U\alpha
f\alpha:X\toRq
x\inU\alpha\capU\beta
x | |
\psi | |
\alpha\beta |
f\alpha(x)
f\beta(x)
x | |
\Psi | |
\alpha\beta |
\circf\alpha=f\beta
such that the continuous maps
\Psi\alpha:x\mapstogermx
x | |
(\psi | |
\alpha\beta |
)
U\alpha\capU\beta
\Rq
\displaystyle\Psi\gamma\alpha(u)=\Psi\gamma\beta(u)\Psi\beta\alpha(u)
u\inU\alpha\capU\beta\capU\gamma.
The cocycle
\Psi\alpha
More generally,
l{C}r
An advantage of Haefliger structures over foliations is that they are closed under pullbacks. More precisely, given a Haefliger structure on
X
\Psi\alpha
f:Y\toX
Y
f-1(U\alpha)
\Psi\alpha\circf
X
Y\subseteqX
Y
Y\hookrightarrowX
X
Y
Y
X x Y\toX
Recall that a codimension-
q
X
U\alpha
\phi\alpha
U\alpha
\Rq
\alpha,\beta
\Phi\alpha
U\alpha\capU\beta
\phi\alpha(v)=\Phi\alpha,\beta(u)(\phi\beta(v))
v
u
\Psi\alpha,\beta(u)=
\Phi\alpha,\beta(u)
As anticipated, foliations are not closed in general under pullbacks but Haefliger structures are. Indeed, given a continuous map
f:X\toY
Y
f
f
Two Haefliger structures on
X
X x [0,1]
X x 0
X x 1
There is a classifying space
B\Gammaq
q
X
X
B\Gammaq
X
X
X
B\Gammaq
. Manifolds--Amsterdam 1970 (Proc. Nuffic Summer School) . . 1971 . Lecture Notes in Mathematics, Vol. 197 . 197 . Berlin, New York . 133–163 . Homotopy and integrability . 10.1007/BFb0068615 . 978-3-540-05467-2 . 0285027 . André Haefliger.