In mathematical analysis, Haar's Tauberian theorem[1] named after Alfréd Haar, relates the asymptotic behaviour of a continuous function to properties of its Laplace transform. It is related to the integral formulation of the Hardy–Littlewood Tauberian theorem.
William Feller gives the following simplified form for this theorem:[2]
Suppose that
f(t)
t\geq0
F(s)=
infty | |
\int | |
0 |
e-stf(t)dt
s>0
F(s)
s=x+iy
x>0
F
1. For
y ≠ 0
F(x+iy)
x>0
F(iy)
x\to+0
x\geq0
y ≠ 0
s=iy
F(s)=
C | |
s |
+\psi(s),
\psi(iy)
\psi'(iy),\ldots,\psi(r)(iy)
\psi(r)(iy)
2. The integral
infty | |
\int | |
0 |
eityF(x+iy)dy
t\geqT
x>0
T>0
3.
F(x+iy)\to0
y\to\pminfty
x\geq0
4.
F'(iy),\ldots,F(r)(iy)
y\to\pminfty
5. The integrals
y1 | |
\int | |
-infty |
eityF(r)(iy)dy
infty | |
\int | |
y2 |
eityF(r)(iy)dy
t\geqT
y1<0
y2>0
T>0
Under these conditions
\limttr[f(t)-C]=0.
A more detailed version is given in.[3]
Suppose that
f(t)
t\geq0
F(s)=
infty | |
\int | |
0 |
e-stf(t)dt
1. For all values
s=x+iy
x>a
F(s)=F(x+iy)
2. For all
x>a
F(x+iy)
y
\delta>0
\omega
t\geqT
|
\beta | |
\int | |
\alpha |
eiytF(x+iy)dy |<\delta
\alpha,\beta\geq\omega
\alpha,\beta\leq-\omega
3. The function
F(s)
\Res=a
F(s)=
N | |
\sum | |
j=1 |
cj | ||||||
|
+\psi(s)
sj=a+iyj
\psi(a+iy)
n
y
\left|
dn\psi(a+iy) | |
dyn |
\right|
y
4. The derivatives
dkF(a+iy) | |
dyk |
k=0,\ldots,n-1
y\to\pminfty
k=n
5. For sufficiently large
t
\limy
x+iy | |
\int | |
a+iy |
estF(s)ds=0
Under the above hypotheses we have the asymptotic formula
\limttne-at[f(t)-
N | |
\sum | |
j=1 |
cj | |
\Gamma(\rhoj) |
sjt | |
e |
\rhoj-1 | |
t |
]=0.