Histamine N-methyltransferase explained

Histamine N-methyltransferase (HNMT) is a protein encoded by the HNMT gene in humans. It belongs to the methyltransferases superfamily of enzymes and plays a role in the inactivation of histamine, a biomolecule that is involved in various physiological processes. Methyltransferases are present in every life form including archaeans, with 230 families of methyltransferases found across species.

Specifically, HNMT transfers a methyl (-CH3) group from S-adenosyl-L-methionine (SAM-e) to histamine, forming an inactive metabolite called Nτ-methylhistamine, in a chemical reaction called Nτ-methylation. In mammals, HNMT operates alongside diamine oxidase (DAO) as the only two enzymes responsible for histamine metabolism; however, what sets HNMT apart is its unique presence within the central nervous system (CNS), where it governs histaminergic neurotransmission, that is a process where histamine acts as a messenger molecule between the neurons—nerve cells—in the brain. By degrading and regulating levels of histamine specifically within the CNS, HNMT ensures the proper functioning of neural pathways related to arousal, appetite regulation, sleep-wake cycles, and other essential brain functions.

Research on knockout mice—that are genetically modified mice lacking the Hnmt gene—has revealed that the absence of this enzyme leads to increased brain histamine concentrations and behavioral changes such as heightened aggression and disrupted sleep patterns. These findings highlight the critical role played by HNMT in maintaining normal brain function through precise regulation of neuronal signaling involving histamine. Genetic variants affecting HNMT activity have also been implicated in various neurological disorders like Parkinson's disease and attention deficit disorder.

Gene

See also: Introduction to genetics and Gene expression. Histamine N-methyltransferase is encoded by a single gene, called HNMT, which has been mapped to chromosome 2 in humans.

Three transcript variants have been identified for this gene in humans, which produce different protein isoforms[1] due to alternative splicing, which allows a single gene to code for multiple proteins by including or excluding particular exons of a gene in the final mRNA produced from that gene.[2] [3] Of those isoforms, only one has histamine-methylating activity.

In the human genome, six exons from the 50-kb HNMT contribute to forming a unique mRNA species, approximately 1.6 kb in size. This mRNA is then translated into the cytosolic enzyme histamine N-methyltransferase, comprising 292 amino acids, of which 130 amino acids are a conserved sequence.[4] [5] HNMT does not have promoter cis-elements, such as TATA and CAAT boxes.[6] [7]

Protein

See also: Protein folding. HNMT is a cytoplasmic protein,[8] meaning that it operates within the cytoplasm of a cell.[9] The cytoplasm fills the space between the outer cell membrane (also known as the cellular plasma membrane) and the nuclear membrane (which surrounds the cell's nucleus).[9] HNMT helps regulate histamine levels by degrading histamine within the cytoplasm, ensuring proper cellular function.[10]

Proteins consist of amino acid residues and form a three-dimensional structure. The crystallographic structure to depict the three-dimensional structure of human HNMT protein was first described in 2001 as a monomeric protein that has a mass of 33 kilodaltons and consists of two structural domains.[11]

The first domain, called the "MTase domain", contains the active site where methylation occurs. It has a classic fold found in many other methyltransferases and consists of a seven-stranded beta-sheet surrounded by three helices on each side. This domain binds to its cofactor, S-adenosyl-L-methionine (SAM-e), which provides the methyl group for Nτ-methylation reactions.[11]

The second domain, called the "substrate binding domain", interacts with histamine, contributing to its binding to the enzyme molecule. This domain is connected to the MTase domain and forms a separate region. It includes an anti-parallel beta sheet along with additional alpha helices and 310 helices.[11]

Species

Histamine N-methyltransferase belongs to methyltransferases, a superfamily of enzymes present in every life form,[5] including archaeans.[12]

These enzymes catalyze methylation, which is a chemical process that involves the addition of a methyl group to a molecule, which can affect its biological function.[5]

To facilitate methylation, methyltransferases transfer a methyl group (-CH3) from a cosubstrate (donor) to a substrate molecule (acceptor), leading to the formation of a methylated molecule.[5] Most methyltransferases use S-adenosyl-L-methionine (SAM-e) as a donor, converting it into S-adenosyl-L-homocysteine (SAH).[5] In various species, members of the methyltransferase superfamily of enzymes methylate a wide range of molecules, including small molecules, proteins, nucleic acids, and lipids. These enzymes are involved in numerous cellular processes such as signaling, protein repair, chromatin regulation, and gene regulation. More than 230 families of methyltransferases have been described in various species.[5] [13]

This specific protein, histamine N-methyltransferase, is found in vertebrates, including mammals, birds, reptiles, amphibians, and fishes, but not in invertebrates and plants.[4] [14] [15]

The complementary DNA (cDNA) of Hnmt was initially cloned from a rat kidney and has since been cloned from human, mouse, and guinea pig sources.[4] Human HNMT shares 55.37% similarity with that of zebrafish, 86.76% with that of mouse, 90.53% with that of dog, and 99.54% with that of chimpanzee.[14] Moreover, expressed sequence tags from cow, pig, and gorilla, as well as genome survey sequences from pufferfish, also exhibit strong similarity to human HNMT, suggesting that it is a highly conserved protein among vertebrates.[11] To understand the role of histamine N-methyltransferase in brain function, researchers have studied Hnmt-deficient (knockout) mice, that were genetically modified to have the Hnmt gene "knocked out", i.e., deactivated.[16] [17] Scientists discovered that disrupting the gene led to a significant rise in histamine levels in the mouse brain that highlighted the role of the gene in the brain's histamine system and suggested that HNMT genetic variations in humans could be linked to brain disorders.

Tissue and subcellular distribution

On subcellular distribution, histamine N-methyltransferase protein in humans is mainly localized to the nucleoplasm (which is an organelle, i.e., a subunit of a cell) and cytosol (which is the intracellular fluid, i.e., a fluid inside cells). In addition, it is localized to the centrosome (another organelle).[18]

In humans, the protein is present in many tissues and is most abundantly expressed in the brain, thyroid gland, bronchus, duodenum, liver, gallbladder, kidney, and skin.[19]

Function

The function of the HNMT enzyme is histamine metabolism by ways of Nτ-methylation using S-adenosyl-L-methionine (SAM-e) as the methyl donor, producing Nτ-methylhistamine, which, unless excreted, can be further processed by monoamine oxidase B (MAOB) or by diamine oxidase (DAO). Methylated histamine metabolites are excreted with urine.[11]

In mammals, there are two main ways to inactivate histamine by metabolism: one is through a process called oxidative deamination, which involves the enzyme diamine oxidase (DAO) produced by the AOC1 gene, and the other is through a process called Nτ-methylation, which involves the enzyme N-methyltransferase.[20] In the context of biochemistry, inactivation by metabolism refers to the process where a substance, such as a hormone, is converted into a form that is no longer active or effective (inactivation), via a process where the substance is chemically altered (metabolism).[21] [22] [23] [24]

HNMT and DAO are two enzymes that play distinct roles in histamine metabolism. DAO is primarily responsible for metabolizing histamine in extracellular (outside cells) fluids,[25] which include interstitial fluid[26] [27] (fluid surrounding cells) and blood plasma.[28] Such histamine can be exogenous (from food or intestinal flora) or endogenous (released from granules of mast cells and basophils, such as during allergic reactions).[29] DAO is predominantly expressed in the cells of the intestinal epithelium and placenta but not in the central nervous system (CNS).[30] In contrast, HNMT is expressed in CNS and involved in the metabolism of intracellular (inside cells) histamine, which is primarily endogenous and persistently present. HNMT operates in the cytosol, which is the fluid inside cells. Histamine is required to be carried into the cytosol through transporters[31] such as plasma membrane monoamine transporter (SLC29A4) or organic cation transporter 3 (SLC22A3). HNMT enzyme is found in cells of diverse tissues: neurons and glia, brain, kidneys, liver, bronchi, large intestine, ovary, prostate, spinal cord, spleen, and trachea, etc.[32] [33] While DAO is primarily found in the intestinal epithelium, HNMT is present in a wider range of tissues throughout the body. This difference in location also requires different transport mechanisms for histamine to reach each enzyme, reflecting the distinct roles of these enzymes in histamine metabolism. Another distinction between HNMT and DAO lies in their substrate specificity. While HNMT has a strong preference for histamine, DAO can metabolize other biogenic amines—substances, produced by a life form (like a bacteria or an animal) that has an amine functional group (−NH2).[10] [34] The examples of biogenic amines besides histamine that DAO can metabolize are putrescine and cadaverine;[35] still, DAO has a preference for histamine.[36] Both DAO and HNMT exhibit comparable affinities toward histamine.[37]

In the brain of mammals, histamine takes part in histaminergic neurotransmission, that is a process where histamine acts as a messenger molecule between the neurons—the nerve cells. Histamine neurotransmitter activity is controlled by HNMT, since DAO is not present in the CNS. Consequently, the deactivation of histamine via HNMT represents the sole mechanism for ending neurotransmission within the mammalian CNS.[32] This highlights the key role of HNMT for the histamine system of the brain and the brain function in general.[32]

Physiological and clinical significance

Role in health

Histamine has important roles in human physiology as both a hormone and a neurotransmitter. As a hormone, it is involved in the inflammatory response and itching. It regulates physiological functions in the gut and acts on the brain, spinal cord, and uterus. As a neurotransmitter, histamine promotes arousal and regulates appetite and the sleep-wake cycle.[38] [39] [40] It also affects vasodilation, fluid production in tissues like the nose and eyes, gastric acid secretion, sexual function, and immune responses.[41] [42]

HNMT is the only enzyme in the human body responsible for metabolizing histamine within the CNS, playing a role in brain function.[16] [31]

HNMT plays a role in maintaining the proper balance of histamine in the human body. HNMT is responsible for the breakdown and metabolism of histamine, converting it into an inactive metabolite, Nτ-methylhistamine,[41] [42] which inhibits HNMT gene expression in a negative feedback loop.[43] By metabolizing histamine, HNMT helps prevent excessive levels of histamine from accumulating in various tissues and organs. This enzymatic activity ensures that histamine remains at appropriate levels to carry out its physiological functions without causing unwanted effects or triggering allergic reactions. In the central nervous system, HNMT plays an essential role in degrading histamine, where it acts as a neurotransmitter, since HNMT is the only enzyme in the body that can metabolize histamine in the CNS, ending its neurotransmitter activity.[41] [42]

HNMT also plays a role in the airway response to harmful particles,[44] which is the body's physiological reaction to immune allergens, bacteria, or viruses in the respiratory system. Histamine is stored in granules in mast cells, basophils, and in the synaptic vesicles of histaminergic neurons of the airways. When exposed to immune allergens or harmful particles, histamine is released from these storage granules and quickly diffuses into the surrounding tissues. However, the released histamine needs to be rapidly deactivated for proper regulation, which is a function of HNMT.[45] [46]

Histamine intolerance

See main article: article and Histamine intolerance. Histamine intolerance is a presumed set of adverse reactions to ingested histamine in food believed to be associated with flawed activity of DAO and HNMT enzymes. This set of reactions include cutaneous reactions (such as itching, flushing and edema), gastrointestinal symptoms (such as abdominal pain and diarrhea), respiratory symptoms (such as runny nose and nasal congestion), and neurological symptoms (such as dizziness and headache).[31] However, this link between DAO and HNMT enzymes and adverse reactions to ingested histamine in food is not shared by mainstream science due to insufficient evidence.[47] The exact underlying mechanisms by which deficiency in these enzymes can cause these adverse reactions are not fully understood but are hypothesized to involve genetic factors.[47] Despite extensive research, there are no definitive, objective measures or indicators that could unambiguously define histamine intolerance as a distinct medical condition.[47]

Activity measurements

The activity of HNMT, unlike that of DAO, cannot be measured by blood (serum) analysis.[48]

Organs that produce DAO continuously release it into the bloodstream. DAO is stored in vesicular structures associated with the plasma membrane in epithelial cells.[49] As a result, serum DAO activity can be measured, but not HNMT. This is because HNMT is primarily found within the cells of internal organs like the brain or liver and is not released to the bloodstream. Measuring intracellular HNMT directly is challenging. Therefore, diagnosis of HNMT activity is typically done indirectly by testing for known genetic variants.[49]

Genetic variants

There is a genetic variant, registered in the Single Nucleotide Polymorphism database (dbSNP) as rs11558538, found in 10% of the population worldwide, which means that the T allele presents at position 314 of HNMT instead of a usual C allele (c.314C>T). This variant causes the protein to be synthesized with threonine (Thr) replaced with isoleucine (Ile) at position 105 (p.Thr105Ile, T105I). This variant is described as loss-of-function allele reducing HNMT activity, and is associated with diseases such as asthma, allergic rhinitis, and atopic eczema (atopic dermatitis). For individuals with this variant, the intake of HNMT inhibitors, which hamper enzyme activity, and histamine liberators, which release histamine from the granules of mast cells and basophils, could potentially influence their histamine levels.[50] Still, this genetic variant is associated with a reduced risk of Parkinson's disease.[51] [52] [53]

Experiments involving Hnmt-knockout mice have shown that a deficiency in HNMT indeed leads to increased brain histamine concentrations, resulting in heightened aggressive behaviors and disrupted sleep-wake cycles in these mice. In humans, genetic variants that affect HNMT activity have been implicated in various brain disorders, such as Parkinson's disease and attention deficit disorder, but it remains unclear whether these alterations in HNMT are a primary cause or secondary effect of these conditions. Additionally, reduced histamine levels in cerebrospinal fluid have been consistently reported in patients with narcolepsy and other conditions characterized by excessive daytime sleepiness. The association between HNMT polymorphisms and gastrointestinal diseases is still uncertain. While mild polymorphisms can lead to diseases such as asthma and inflammatory bowel disease, they may also reduce the risk of brain disorders like Parkinson's disease. On the other hand, severe mutations in HNMT can result in intellectual disability. Despite these findings, the role of HNMT in human health is not fully understood and continues to be an active area of research.[32]

Inhibitors

The following substances are known to be HNMT inhibitors: amodiaquine, chloroquine, dimaprit, etoprine, metoprine, quinacrine, SKF-91488, tacrine, and diphenhydramine. HNMT inhibitors may increase histamine levels in peripheral tissues and aggravate conditions associated with histamine excess, such as allergic rhinitis, urticaria, and peptic ulcer disease. the effect of HNMT inhibitors on brain function is not yet fully understood. Research suggests that using new inhibitors of HNMT to increase the levels of histamine in the brain could potentially contribute to improvements in the treatment of brain disorders.[54] [55]

Methamphetamine overdose

HNMT could be a potential target for the treatment of symptoms of methamphetamine overdose.[56] It is a central nervous system stimulant, which can be abused up to the lethal consequences: numerous deaths related to methamphetamine overdoses have been reported.[57] [58] The reasoning behind this is that such overdose often leads to behavioral abnormalities, and it has been observed that elevated levels of histamine in the brain can attenuate these methamphetamine-induced behaviors. Therefore, by targeting HNMT, it might be possible to increase the levels of histamine in the brain, which could, in turn, help to mitigate the effects of a methamphetamine overdose. This effect could be achieved by using HNMT inhibitors. Studies predict that one such inhibitor can be metoprine, which crosses the blood-brain barrier and can potentially increase brain histamine levels by inhibiting HNMT; still, treatment of methamphetamine overdose by HNMT inhibitors is still an area of research.[56]

Nτ-methylhistamine

See main article: article and 1-Methylhistamine. Nτ-methylhistamine (NτMH), also known as 1-methylhistamine, is a product of Nτ-methylation of histamine in a reaction catalyzed by the HNMT enzyme.[11] [53]

NτMH is considered a biologically inactive metabolite of histamine.[59] [60] [61] NτMH is excreted in the urine and can be measured to estimate the amounts of active histamine in the body. While NτMH has some biological activity on its own, it is much weaker than histamine. NτMH can bind to histamine receptors but has a lower affinity and efficacy than histamine for these receptors, meaning that it binds less strongly and activates them less effectively. Depending on the receptor subtype and the tissue context, NτMH may act as a partial agonist or an antagonist for some histamine receptors. NτMH may have some modulatory effects on histamine signaling, but it is unlikely to cause significant allergic or inflammatory reactions by itself. NτMH may also serve as a feedback mechanism to regulate histamine levels and prevent excessive histamine release.[62] Still, NMT, being a product in a reaction catalyzed by HNMT, may inhibit expression of HNMT in a negative feedback loop.[43]

Urinary NτMH can be measured in clinical settings when systemic mastocytosis is suspected. Systemic mastocytosis and anaphylaxis are typically associated with at least a two-fold increase in urinary NτMH levels, which are also increased in patients taking monoamine oxidase inhibitors and in patients on histamine-rich diets.[63]

External links

Notes and References

  1. Web site: UniProt HNMT isoforms . 27 November 2023 . 29 November 2023 . https://web.archive.org/web/20231129013516/https://www.uniprot.org/uniprotkb/P50135/entry#sequences . live .
  2. Marasco LE, Kornblihtt AR . The physiology of alternative splicing . Nature Reviews. Molecular Cell Biology . 24 . 4 . 242–254 . April 2023 . 36229538 . 10.1038/s41580-022-00545-z . 252896843 .
  3. Rogalska ME, Vivori C, Valcárcel J . Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects . Nature Reviews. Genetics . 24 . 4 . 251–269 . April 2023 . 36526860 . 10.1038/s41576-022-00556-8 . 254809593 .
  4. Barnes WG, Grinde E, Crawford DR, Herrick-Davis K, Hough LB . Characterization of a new mRNA species from the human histamine N-methyltransferase gene . Genomics . 83 . 1 . 168–171 . January 2004 . 14667820 . 10.1016/s0888-7543(03)00236-2 .
  5. Web site: InterPro . 28 November 2023 . www.ebi.ac.uk . 29 November 2023 . https://web.archive.org/web/20231129013514/https://www.ebi.ac.uk/interpro/entry/InterPro/IPR016673/ . live .
  6. Wang L, Thomae B, Eckloff B, Wieben E, Weinshilboum R . Human histamine N-methyltransferase pharmacogenetics: gene resequencing, promoter characterization, and functional studies of a common 5'-flanking region single nucleotide polymorphism (SNP) . Biochemical Pharmacology . 64 . 4 . 699–710 . August 2002 . 12167489 . 10.1016/S0006-2952(02)01223-6 .
  7. Reyes-Palomares A, Montañez R, Sánchez-Jiménez F, Medina MA . A combined model of hepatic polyamine and sulfur amino acid metabolism to analyze S-adenosyl methionine availability . Amino Acids . 42 . 2–3 . 597–610 . February 2012 . 21814788 . 10.1007/s00726-011-1035-7 .
  8. Heidari A, Tongsook C, Najafipour R, Musante L, Vasli N, Garshasbi M, Hu H, Mittal K, McNaughton AJ, Sritharan K, Hudson M, Stehr H, Talebi S, Moradi M, Darvish H, Arshad Rafiq M, Mozhdehipanah H, Rashidinejad A, Samiei S, Ghadami M, Windpassinger C, Gillessen-Kaesbach G, Tzschach A, Ahmed I, Mikhailov A, Stavropoulos DJ, Carter MT, Keshavarz S, Ayub M, Najmabadi H, Liu X, Ropers HH, Macheroux P, Vincent JB . Mutations in the histamine N-methyltransferase gene, HNMT, are associated with nonsyndromic autosomal recessive intellectual disability . Human Molecular Genetics . 24 . 20 . 5697–5710 . October 2015 . 26206890 . 4581600 . 10.1093/hmg/ddv286 .
  9. Book: 10.1007/978-3-319-41873-5_3. The Cytoplasm . Compendium of Histology . 2017 . 27–47 . 978-3-319-41871-1 . Rehfeld A, Nylander M, Karnov K .
  10. Book: 10.1385/0-89603-079-2:147. Histamine N-Methyltransferase. Verburg KM, Henry DP. 1986. 5. Humana Press. 978-1-59259-610-2.
  11. Horton JR, Sawada K, Nishibori M, Zhang X, Cheng X . Two polymorphic forms of human histamine methyltransferase: structural, thermal, and kinetic comparisons . Structure . 9 . 9 . 837–849 . September 2001 . 11566133 . 4030376 . 10.1016/s0969-2126(01)00643-8 .
  12. Lee YH, Ren D, Jeon B, Liu HW . S-Adenosylmethionine: more than just a methyl donor . Natural Product Reports . 40 . 9 . 1521–1549 . September 2023 . 36891755 . 10491745 . 10.1039/d2np00086e .
  13. Schubert HL, Blumenthal RM, Cheng X . Many paths to methyltransfer: a chronicle of convergence . Trends in Biochemical Sciences . 28 . 6 . 329–335 . June 2003 . 12826405 . 2758044 . 10.1016/S0968-0004(03)00090-2 .
  14. Web site: HNMT Gene – GeneCards | HNMT Protein | HNMT Antibody. 27 November 2023. 5 December 2023. https://web.archive.org/web/20231205090600/https://www.genecards.org/cgi-bin/carddisp.pl?gene=HNMT. live.
  15. Goulty M, Botton-Amiot G, Rosato E, Sprecher SG, Feuda R . The monoaminergic system is a bilaterian innovation . Nature Communications . 14 . 1 . 3284 . June 2023 . 37280201 . 10.1038/s41467-023-39030-2 . free . 10244343 . 2023NatCo..14.3284G .
  16. Naganuma F, Nakamura T, Yoshikawa T, Iida T, Miura Y, Kárpáti A, Matsuzawa T, Yanai A, Mogi A, Mochizuki T, Okamura N, Yanai K . Histamine N-methyltransferase regulates aggression and the sleep-wake cycle . Scientific Reports . 7 . 1 . 15899 . November 2017 . 29162912 . 5698467 . 10.1038/s41598-017-16019-8 . 2017NatSR...715899N .
  17. Ogasawara M, Yamauchi K, Satoh Y, Yamaji R, Inui K, Jonker JW, Schinkel AH, Maeyama K . Recent advances in molecular pharmacology of the histamine systems: organic cation transporters as a histamine transporter and histamine metabolism . Journal of Pharmacological Sciences . 101 . 1 . 24–30 . May 2006 . 16648665 . 10.1254/jphs.fmj06001x6 . free .
  18. Web site: Subcellular – HNMT – the Human Protein Atlas . 27 November 2023 . 29 November 2023 . https://web.archive.org/web/20231129013516/https://www.proteinatlas.org/ENSG00000150540-HNMT/subcellular . live .
  19. Web site: Tissue expression of HNMT – Summary – the Human Protein Atlas . 27 November 2023 . 17 October 2023 . https://web.archive.org/web/20231017164355/https://www.proteinatlas.org/ENSG00000150540-HNMT/tissue . live .
  20. Kucher AN, Cherevko NA . Genes of the Histamine Pathway and Common Diseases . Russian Journal of Genetics . 2018 . 54 . 1 . 15–32 . 10.1134/S1022795418010088 .
  21. Book: 10.1007/978-94-009-3353-8_7. 978-94-009-3353-8. 1987 . Metabolism of Endogenous Substances . Frontiers in Microbiology . 79–88 . Midtvedt T .
  22. Book: 10.1007/1-4020-4142-X_2. 978-1-4020-4142-6. 2005 . Pathways of Biotransformation — Phase I Reactions . Drug Metabolism . 41–128 .
  23. Book: 978-1-4020-4142-6 . Drug Metabolism: Current Concepts . 10 July 2006 . Springer . Caira MR, Ionescu C .
  24. Web site: Drug Metabolism – Clinical Pharmacology. 17 April 2024. 27 November 2022. https://web.archive.org/web/20221127042834/https://www.merckmanuals.com/professional/clinical-pharmacology/pharmacokinetics/drug-metabolism. live.
  25. Dou Y, Zhu F, Kotanko P . Assessment of extracellular fluid volume and fluid status in hemodialysis patients: current status and technical advances . Seminars in Dialysis . 25 . 4 . 377–387 . July 2012 . 22686593 . 10.1111/j.1525-139X.2012.01095.x . Extracellular fluid is distributed in two major sub-compartments: interstitial fluid and plasma .
  26. Cox JS . Disodium cromoglycate. Mode of action and its possible relevance to the clinical use of the drug . British Journal of Diseases of the Chest . 65 . 4 . 189–204 . October 1971 . 4400180 . 10.1016/0007-0971(71)90028-3 .
  27. Yamamoto S, Francis D, Greaves MW . Enzymic histamine catabolism in skin and its possible clinical significance: a review . Clinical and Experimental Dermatology . 2 . 4 . 389–393 . December 1977 . 414862 . 10.1111/j.1365-2230.1977.tb01580.x .
  28. Boehm T, Reiter B, Ristl R, Petroczi K, Sperr W, Stimpfl T, Valent P, Jilma B . Massive release of the histamine-degrading enzyme diamine oxidase during severe anaphylaxis in mastocytosis patients . Allergy . 74 . 3 . 583–593 . March 2019 . 30418682 . 6590243 . 10.1111/all.13663 .
  29. Hakl R, Litzman J . Histamine intolerance . Vnitrni Lekarstvi . 69 . 1 . 37–40 . 2023 . 36931880 . 10.36290/vnl.2023.005 . 257604532 . free .
  30. Maintz L, Schwarzer V, Bieber T, van der Ven K, Novak N . Effects of histamine and diamine oxidase activities on pregnancy: a critical review . Human Reproduction Update . 14 . 5 . 485–495 . 2008 . 18499706 . 10.1093/humupd/dmn014 . free .
  31. Book: Yoshikawa T, Yanai K . Histamine and Histamine Receptors in Health and Disease . Histamine Clearance Through Polyspecific Transporters in the Brain . 241 . 173–187 . 28 September 2016 . 27679412 . 10.1007/164_2016_13 . 978-3-319-58192-7 . Handbook of Experimental Pharmacology .
  32. Verhoeven WM, Egger JI, Janssen PK, van Haeringen A . Adult male patient with severe intellectual disability caused by a homozygous mutation in the HNMT gene . BMJ Case Reports . 13 . 12 . e235972 . December 2020 . 33310825 . 7735107 . 10.1136/bcr-2020-235972 .
  33. Book: Borriello F, Iannone R, Marone G . Histamine and Histamine Receptors in Health and Disease . Histamine Release from Mast Cells and Basophils . Handbook of Experimental Pharmacology . 241 . 121–139 . 2017 . Springer . 28332048 . 10.1007/164_2017_18 . 978-3-319-58192-7 .
  34. Schwelberger HG, Feurle J, Houen G . Mapping of the binding sites of human histamine N-methyltransferase (HNMT) monoclonal antibodies . Inflammation Research . 66 . 11 . 1021–1029 . November 2017 . 28791419 . 5633628 . 10.1007/s00011-017-1086-7 .
  35. Kettner L, Seitl I, Fischer L . Recent advances in the application of microbial diamine oxidases and other histamine-oxidizing enzymes . World Journal of Microbiology & Biotechnology . 38 . 12 . 232 . October 2022 . 36208352 . 9547800 . 10.1007/s11274-022-03421-2 .
  36. Schnedl WJ, Lackner S, Enko D, Schenk M, Mangge H, Holasek SJ . Non-celiac gluten sensitivity: people without celiac disease avoiding gluten-is it due to histamine intolerance? . Inflammation Research . 67 . 4 . 279–284 . April 2018 . 29181545 . 10.1007/s00011-017-1117-4 .
  37. Book: Schwelberger HG, Ahrens F, Fogel WS, Sánchez-Jiménez F . Chapter 3 Histamine Metabolism . https://www.degruyter.com/document/doi/10.2478/9788376560564.c3/pdf?licenseType=free . Stark H . Histamine H4 Receptor: A Novel Drug Target in Immunoregulation and Inflammation . 10.2478/9788376560564.c3 . 2013 . 63–102 . 978-83-7656-054-0 . 20 April 2024 . 20 April 2024 . https://web.archive.org/web/20240420081054/https://www.degruyter.com/document/doi/10.2478/9788376560564.c3/pdf?licenseType=free . live .
  38. Book: 10.1007/7854_2021_235 . Histamine in the Crosstalk Between Innate Immune Cells and Neurons: Relevance for Brain Homeostasis and Disease . The Functional Roles of Histamine Receptors . Current Topics in Behavioral Neurosciences . 2021 . 59 . 261–288 . 34432259 . 978-3-031-16996-0 . Bernardino L .
  39. Haas HL, Sergeeva OA, Selbach O . Histamine in the nervous system . Physiological Reviews . 88 . 3 . 1183–1241 . July 2008 . 18626069 . 10.1152/physrev.00043.2007 .
  40. Satpati A, Neylan T, Grinberg LT . Histaminergic neurotransmission in aging and Alzheimer's disease: A review of therapeutic opportunities and gaps . Alzheimer's & Dementia . 9 . 2 . e12379 . 2023 . 37123051 . 10130560 . 10.1002/trc2.12379 .
  41. Lieberman P . The basics of histamine biology . Annals of Allergy, Asthma & Immunology . 106 . 2 Suppl . S2–S5 . February 2011 . 21277530 . 10.1016/j.anai.2010.08.005 .
  42. Book: Mochizuki T . The Functional Roles of Histamine Receptors . Histamine as an Alert Signal in the Brain . 59 . 413–425 . 2022 . 34448132 . 10.1007/7854_2021_249 . 978-3-031-16996-0 . Current Topics in Behavioral Neurosciences . 237329317 .
  43. Peters LJ, Kovacic JP . Histamine: metabolism, physiology, and pathophysiology with applications in veterinary medicine . Journal of Veterinary Emergency and Critical Care . 19 . 4 . 311–328 . August 2009 . 25164630 . 10.1111/j.1476-4431.2009.00434.x .
  44. Web site: UniProt HNMT . 27 November 2023 . 29 November 2023 . https://web.archive.org/web/20231129013516/https://www.uniprot.org/uniprotkb/P50135/entry . live .
  45. Schwartz JC, Arrang JM, Garbarg M, Pollard H, Ruat M . Histaminergic transmission in the mammalian brain . Physiological Reviews . 71 . 1 . 1–51 . January 1991 . 1846044 . 10.1152/physrev.1991.71.1.1 .
  46. Sande CJ, Njunge JM, Mwongeli Ngoi J, Mutunga MN, Chege T, Gicheru ET, Gardiner EM, Gwela A, Green CA, Drysdale SB, Berkley JA, Nokes DJ, Pollard AJ . Airway response to respiratory syncytial virus has incidental antibacterial effects . Nature Communications . 10 . 1 . 2218 . May 2019 . 31101811 . 6525170 . 10.1038/s41467-019-10222-z . 2019NatCo..10.2218S .
  47. Reese I, Ballmer-Weber B, Beyer K, Dölle-Bierke S, Kleine-Tebbe J, Klimek L, Lämmel S, Lepp U, Saloga J, Schäfer C, Szepfalusi Z, Treudler R, Werfel T, Zuberbier T, Worm M . Guideline on management of suspected adverse reactions to ingested histamine: Guideline of the German Society for Allergology and Clinical Immunology (DGAKI), the Society for Pediatric Allergology and Environmental Medicine (GPA), the Medical Association of German Allergologists (AeDA) as well as the Swiss Society for Allergology and Immunology (SGAI) and the Austrian Society for Allergology and Immunology (ÖGAI) . Allergologie Select . 5 . 305–314 . 2021 . 34651098 . 8511827 . 10.5414/ALX02269E .
  48. Scott MC, Guerciolini R, Szumlanski C, Weinshilboum RM . Mouse kidney histamine N-methyltransferase: assay conditions, biochemical properties and strain variation . Agents and Actions . 32 . 3–4 . 194–202 . March 1991 . 1907425 . 10.1007/BF01980873 . 35519684 .
  49. Maintz L, Novak N . Histamine and histamine intolerance . The American Journal of Clinical Nutrition . 85 . 5 . 1185–1196 . May 2007 . 17490952 . 10.1093/ajcn/85.5.1185 . free .
  50. García-Martín E, Ayuso P, Martínez C, Blanca M, Agúndez JA . Histamine pharmacogenomics . Pharmacogenomics . 10 . 5 . 867–883 . May 2009 . 19450133 . 10.2217/pgs.09.26 .
  51. Lu Y, Dong CZ, Bao D, Zhong C, Liu K, Chen L, Wang W, Yang B . The Thr105Ile Variant (rs11558538) of the Histamine N-methyltransferase Gene may be associated with Reduced Risk of Parkinson Disease: A Meta-analysis . Genetic Testing and Molecular Biomarkers . 26 . 11 . 543–549 . November 2022 . 36378841 . 10.1089/gtmb.2021.0299 . 253551556 .
  52. Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JA . Thr105Ile (rs11558538) polymorphism in the histamine N-methyltransferase (HNMT) gene and risk for Parkinson disease: A PRISMA-compliant systematic review and meta-analysis . Medicine . 95 . 27 . e4147 . July 2016 . 27399132 . 5058861 . 10.1097/MD.0000000000004147 .
  53. Li J, Sun C, Cai W, Li J, Rosen BP, Chen J . Insights into S-adenosyl-l-methionine (SAM)-dependent methyltransferase related diseases and genetic polymorphisms . Mutation Research/Reviews in Mutation Research . 788 . 108396 . 2021 . 34893161 . 8847900 . 10.1016/j.mrrev.2021.108396 . 2021MRRMR.78808396L .
  54. Horton JR, Sawada K, Nishibori M, Cheng X . Structural basis for inhibition of histamine N-methyltransferase by diverse drugs . Journal of Molecular Biology . 353 . 2 . 334–344 . October 2005 . 16168438 . 4021489 . 10.1016/j.jmb.2005.08.040 .
  55. 10.1016/j.jtice.2012.01.004. Pharmacophore modeling, virtual screening and docking studies to identify novel HNMT inhibitors. 2012 . Pavadai L. Journal of the Taiwan Institute of Chemical Engineers . 43 . 4 . 493–503 .
  56. Kitanaka J, Kitanaka N, Hall FS, Uhl GR, Takemura M . Brain Histamine N-Methyltransferase As a Possible Target of Treatment for Methamphetamine Overdose . Drug Target Insights . 10 . 1–7 . 2016 . 26966348 . 4777238 . 10.4137/DTI.S38342 .
  57. Web site: Meth Overdose Symptoms, Effects & Treatment | BlueCrest. 17 June 2019. Bluecrest Recovery Center. 8 October 2020. 16 January 2021. https://web.archive.org/web/20210116171406/https://www.bluecrestrc.com/can-you-overdose-on-meth/. live.
  58. Web site: Overdose Death Rates. 29 January 2021. National Institute on Drug Abuse. 8 October 2020. 25 January 2018. https://web.archive.org/web/20180125182059/https://www.drugabuse.gov/related-topics/trends-statistics/overdose-death-rates. live.
  59. Maslinski S, Schippert B, Kovar KA, Sewing KF . Methylation of histamine in the gastric mucosa . Digestion . 15 . 6 . 497–505 . 1977 . 913915 . 10.1159/000198040 .
  60. Murray S, Taylor GW, Karim QN, Bliss P, Calam J . N alpha-methylhistamine: association with Helicobacter pylori infection in humans and effects on gastric acid secretion . Clinica Chimica Acta; International Journal of Clinical Chemistry . 301 . 1–2 . 181–192 . November 2000 . 11020472 . 10.1016/s0009-8981(00)00357-0 .
  61. Grassmann S, Apelt J, Ligneau X, Pertz HH, Arrang JM, Ganellin CR, Schwartz JC, Schunack W, Stark H . Search for histamine H(3) receptor ligands with combined inhibitory potency at histamine N-methyltransferase: omega-piperidinoalkanamine derivatives . Archiv der Pharmazie . 337 . 10 . 533–545 . October 2004 . 15476285 . 10.1002/ardp.200400897 . 19755327 .
  62. Book: 10.1007/978-90-481-9349-3_4. Biological and Pharmacological Aspects of Histamine Receptors and Their Ligands . Biomedical Aspects of Histamine . 2010 . Mohammed T. 61–100 . Springer . 978-90-481-9348-6 .
  63. Book: 10.1016/B978-0-12-415853-5.00063-7. Chapter 63 - Evaluation of the Patient at Risk for Osteoporosis. Evaluation of the Patient at Risk for Osteoporosis . 2013 . Lewiecki M. 1481–1504 . Academic Press . 978-0-12-415853-5 .