H3R2me2 explained
H3R2me2 is an epigenetic modification to the DNA packaging protein histone H3. It is a mark that indicates the di-methylation at the 2nd arginine residue of the histone H3 protein. In epigenetics, arginine methylation of histones H3 and H4 is associated with a more accessible chromatin structure and thus higher levels of transcription. The existence of arginine demethylases that could reverse arginine methylation is controversial.[1]
Nomenclature
The name of this modification indicates dimethylation of arginine 2 on histone H3 protein subunit:[2]
Abbr. | Meaning |
H3 | H3 family of histones |
R | standard abbreviation for arginine |
2 | position of amino acid residue(counting from N-terminus) |
me | methyl group |
2 | number of methyl groups added | |
Arginine
Arginine can be methylated once (monomethylated arginine) or twice (dimethylated arginine). Methylation of arginine residues is catalyzed by three different classes of protein arginine methyltransferases.
Arginine methylation affects the interactions between proteins and has been implicated in a variety of cellular processes, including protein trafficking, signal transduction, and transcriptional regulation.[3]
Arginine methylation plays a major role in gene regulation because of the ability of the PRMTs to deposit key activating (histone H4R3me2, H3R2me2, H3R17me2, H3R26me2) or repressive (H3R2me2, H3R8me2, H4R3me2) histone marks.
Histone modifications
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as histones. The complexes formed by the looping of the DNA are known as chromatin.
Mechanism and function of modification
JMJD6, a Jumonji domain-containing protein, was reported to demethylate H3R2me2.[4] H3R2me2 is a major mark deposited by PRMT6. H3R2me1 and H3R2me2 marks are associated with highly expressed genes although H3R2me2 can block H3K4me3 effector molecules.
Epigenetic implications
The post-translational modification of histone tails by either histone-modifying complexes or chromatin remodeling complexes is interpreted by the cell and leads to complex, combinatorial transcriptional output. It is thought that a histone code dictates the expression of genes by a complex interaction between the histones in a particular region.[5] The current understanding and interpretation of histones comes from two large scale projects: ENCODE and the Epigenomic roadmap.[6] The purpose of the epigenomic study was to investigate epigenetic changes across the entire genome. This led to chromatin states, which define genomic regions by grouping different proteins and/or histone modifications together.Chromatin states were investigated in Drosophila cells by looking at the binding location of proteins in the genome. Use of ChIP-sequencing revealed regions in the genome characterized by different banding.[7] Different developmental stages were profiled in Drosophila as well, an emphasis was placed on histone modification relevance.[8] A look in to the data obtained led to the definition of chromatin states based on histone modifications.[9] Certain modifications were mapped and enrichment was seen to localize in certain genomic regions.
The human genome is annotated with chromatin states. These annotated states can be used as new ways to annotate a genome independently of the underlying genome sequence. This independence from the DNA sequence enforces the epigenetic nature of histone modifications. Chromatin states are also useful in identifying regulatory elements that have no defined sequence, such as enhancers. This additional level of annotation allows for a deeper understanding of cell specific gene regulation.[10]
Clinical significance
As of March 2021, PRMT6-mediated H3R2me2 role in early embryonic development and ES cell identity are unclear.[11]
Methods
The histone mark H3K4me1 can be detected in a variety of ways:
1. Chromatin Immunoprecipitation Sequencing (ChIP-sequencing) measures the amount of DNA enrichment once bound to a targeted protein and immunoprecipitated. It results in good optimization and is used in vivo to reveal DNA-protein binding occurring in cells. ChIP-Seq can be used to identify and quantify various DNA fragments for different histone modifications along a genomic region.[12]
2. Micrococcal Nuclease sequencing (MNase-seq) is used to investigate regions that are bound by well-positioned nucleosomes. Use of the micrococcal nuclease enzyme is employed to identify nucleosome positioning. Well-positioned nucleosomes are seen to have enrichment of sequences.[13]
3. Assay for transposase accessible chromatin sequencing (ATAC-seq) is used to look in to regions that are nucleosome free (open chromatin). It uses hyperactive Tn5 transposon to highlight nucleosome localisation.[14] [15] [16]
See also
Notes and References
- Blanc. Roméo S.. Richard. Stéphane. 2017. Arginine Methylation: The Coming of Age. Molecular Cell. 65. 1. 8–24. 10.1016/j.molcel.2016.11.003. 28061334. free.
- Book: 9780127999586 . 21–38. Epigenetic Gene Expression and Regulation. Huang. Suming. Litt. Michael D.. Ann Blakey. C.. 30 November 2015. Elsevier Science .
- McBride. A.. Silver. P.. 2001. State of the Arg: Protein Methylation at Arginine Comes of Age. Cell. 106. 1. 5–8. 10.1016/S0092-8674(01)00423-8. 11461695. 17755108. free.
- 10.1016/j.febslet.2010.11.010 . free. Histone arginine methylation. 2011. Di Lorenzo. Alessandra. Bedford. Mark T.. FEBS Letters. 585. 13. 2024–2031. 21074527. 3409563.
- Jenuwein T, Allis CD . Translating the histone code . Science . 293 . 5532 . 1074–80 . August 2001 . 11498575 . 10.1126/science.1063127 . 1883924 . 10.1.1.453.900 .
- John Stamatoyannopoulos . Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day N, Dhami P, Dillon SC, Dorschner MO, Fiegler H, Giresi PG, Goldy J, Hawrylycz M, Haydock A, Humbert R, James KD, Johnson BE, Johnson EM, Frum TT, Rosenzweig ER, Karnani N, Lee K, Lefebvre GC, Navas PA, Neri F, Parker SC, Sabo PJ, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu M, Collins FS, Dekker J, Lieb JD, Tullius TD, Crawford GE, Sunyaev S, Noble WS, Dunham I, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker IL, Baertsch R, Keefe D, Dike S, Cheng J, Hirsch HA, Sekinger EA, Lagarde J, Abril JF, Shahab A, Flamm C, Fried C, Hackermüller J, Hertel J, Lindemeyer M, Missal K, Tanzer A, Washietl S, Korbel J, Emanuelsson O, Pedersen JS, Holroyd N, Taylor R, Swarbreck D, Matthews N, Dickson MC, Thomas DJ, Weirauch MT, Gilbert J, Drenkow J, Bell I, Zhao X, Srinivasan KG, Sung WK, Ooi HS, Chiu KP, Foissac S, Alioto T, Brent M, Pachter L, Tress ML, Valencia A, Choo SW, Choo CY, Ucla C, Manzano C, Wyss C, Cheung E, Clark TG, Brown JB, Ganesh M, Patel S, Tammana H, Chrast J, Henrichsen CN, Kai C, Kawai J, Nagalakshmi U, Wu J, Lian Z, Lian J, Newburger P, Zhang X, Bickel P, Mattick JS, Carninci P, Hayashizaki Y, Weissman S, Hubbard T, Myers RM, Rogers J, Stadler PF, Lowe TM, Wei CL, Ruan Y, Struhl K, Gerstein M, Antonarakis SE, Fu Y, Green ED, Karaöz U, Siepel A, Taylor J, Liefer LA, Wetterstrand KA, Good PJ, Feingold EA, Guyer MS, Cooper GM, Asimenos G, Dewey CN, Hou M, Nikolaev S, Montoya-Burgos JI, Löytynoja A, Whelan S, Pardi F, Massingham T, Huang H, Zhang NR, Holmes I, Mullikin JC, Ureta-Vidal A, Paten B, Seringhaus M, Church D, Rosenbloom K, Kent WJ, Stone EA, Batzoglou S, Goldman N, Hardison RC, Haussler D, Miller W, Sidow A, Trinklein ND, Zhang ZD, Barrera L, Stuart R, King DC, Ameur A, Enroth S, Bieda MC, Kim J, Bhinge AA, Jiang N, Liu J, Yao F, Vega VB, Lee CW, Ng P, Shahab A, Yang A, Moqtaderi Z, Zhu Z, Xu X, Squazzo S, Oberley MJ, Inman D, Singer MA, Richmond TA, Munn KJ, Rada-Iglesias A, Wallerman O, Komorowski J, Fowler JC, Couttet P, Bruce AW, Dovey OM, Ellis PD, Langford CF, Nix DA, Euskirchen G, Hartman S, Urban AE, Kraus P, Van Calcar S, Heintzman N, Kim TH, Wang K, Qu C, Hon G, Luna R, Glass CK, Rosenfeld MG, Aldred SF, Cooper SJ, Halees A, Lin JM, Shulha HP, Zhang X, Xu M, Haidar JN, Yu Y, Ruan Y, Iyer VR, Green RD, Wadelius C, Farnham PJ, Ren B, Harte RA, Hinrichs AS, Trumbower H, Clawson H, Hillman-Jackson J, Zweig AS, Smith K, Thakkapallayil A, Barber G, Kuhn RM, Karolchik D, Armengol L, Bird CP, de Bakker PI, Kern AD, Lopez-Bigas N, Martin JD, Stranger BE, Woodroffe A, Davydov E, Dimas A, Eyras E, Hallgrímsdóttir IB, Huppert J, Zody MC, Abecasis GR, Estivill X, Bouffard GG, Guan X, Hansen NF, Idol JR, Maduro VV, Maskeri B, McDowell JC, Park M, Thomas PJ, Young AC, Blakesley RW, Muzny DM, Sodergren E, Wheeler DA, Worley KC, Jiang H, Weinstock GM, Gibbs RA, Graves T, Fulton R, Mardis ER, Wilson RK, Clamp M, Cuff J, Gnerre S, Jaffe DB, Chang JL, Lindblad-Toh K, Lander ES, Koriabine M, Nefedov M, Osoegawa K, Yoshinaga Y, Zhu B, de Jong PJ . 6 . Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project . Nature . 447 . 7146 . 799–816 . June 2007 . 17571346 . 2212820 . 10.1038/nature05874 . The ENCODE Project Consortium . 2007Natur.447..799B .
- Filion GJ, van Bemmel JG, Braunschweig U, Talhout W, Kind J, Ward LD, Brugman W, de Castro IJ, Kerkhoven RM, Bussemaker HJ, van Steensel B . Systematic protein location mapping reveals five principal chromatin types in Drosophila cells . Cell . 143 . 2 . 212–24 . October 2010 . 20888037 . 3119929 . 10.1016/j.cell.2010.09.009 .
- Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML, Landolin JM, Bristow CA, Ma L, Lin MF, Washietl S, Arshinoff BI, Ay F, Meyer PE, Robine N, Washington NL, Di Stefano L, Berezikov E, Brown CD, Candeias R, Carlson JW, Carr A, Jungreis I, Marbach D, Sealfon R, Tolstorukov MY, Will S, Alekseyenko AA, Artieri C, Booth BW, Brooks AN, Dai Q, Davis CA, Duff MO, Feng X, Gorchakov AA, Gu T, Henikoff JG, Kapranov P, Li R, MacAlpine HK, Malone J, Minoda A, Nordman J, Okamura K, Perry M, Powell SK, Riddle NC, Sakai A, Samsonova A, Sandler JE, Schwartz YB, Sher N, Spokony R, Sturgill D, van Baren M, Wan KH, Yang L, Yu C, Feingold E, Good P, Guyer M, Lowdon R, Ahmad K, Andrews J, Berger B, Brenner SE, Brent MR, Cherbas L, Elgin SC, Gingeras TR, Grossman R, Hoskins RA, Kaufman TC, Kent W, Kuroda MI, Orr-Weaver T, Perrimon N, Pirrotta V, Posakony JW, Ren B, Russell S, Cherbas P, Graveley BR, Lewis S, Micklem G, Oliver B, Park PJ, Celniker SE, Henikoff S, Karpen GH, Lai EC, MacAlpine DM, Stein LD, White KP, Kellis M . 6 . Identification of functional elements and regulatory circuits by Drosophila modENCODE . Science . 330 . 6012 . 1787–97 . December 2010 . 21177974 . 3192495 . 10.1126/science.1198374 . modENCODE Consortium . 2010Sci...330.1787R .
- Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, Ernst J, Sabo PJ, Larschan E, Gorchakov AA, Gu T, Linder-Basso D, Plachetka A, Shanower G, Tolstorukov MY, Luquette LJ, Xi R, Jung YL, Park RW, Bishop EP, Canfield TK, Sandstrom R, Thurman RE, MacAlpine DM, Stamatoyannopoulos JA, Kellis M, Elgin SC, Kuroda MI, Pirrotta V, Karpen GH, Park PJ . 6 . Comprehensive analysis of the chromatin landscape in Drosophila melanogaster . Nature . 471 . 7339 . 480–5 . March 2011 . 21179089 . 10.1038/nature09725 . 3109908 . 2011Natur.471..480K .
- Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, Ziller MJ, Amin V, Whitaker JW, Schultz MD, Ward LD, Sarkar A, Quon G, Sandstrom RS, Eaton ML, Wu YC, Pfenning AR, Wang X, Claussnitzer M, Liu Y, Coarfa C, Harris RA, Shoresh N, Epstein CB, Gjoneska E, Leung D, Xie W, Hawkins RD, Lister R, Hong C, Gascard P, Mungall AJ, Moore R, Chuah E, Tam A, Canfield TK, Hansen RS, Kaul R, Sabo PJ, Bansal MS, Carles A, Dixon JR, Farh KH, Feizi S, Karlic R, Kim AR, Kulkarni A, Li D, Lowdon R, Elliott G, Mercer TR, Neph SJ, Onuchic V, Polak P, Rajagopal N, Ray P, Sallari RC, Siebenthall KT, Sinnott-Armstrong NA, Stevens M, Thurman RE, Wu J, Zhang B, Zhou X, Beaudet AE, Boyer LA, De Jager PL, Farnham PJ, Fisher SJ, Haussler D, Jones SJ, Li W, Marra MA, McManus MT, Sunyaev S, Thomson JA, Tlsty TD, Tsai LH, Wang W, Waterland RA, Zhang MQ, Chadwick LH, Bernstein BE, Costello JF, Ecker JR, Hirst M, Meissner A, Milosavljevic A, Ren B, Stamatoyannopoulos JA, Wang T, Kellis M . 8 . Integrative analysis of 111 reference human epigenomes . Nature . 518 . 7539 . 317–30 . February 2015 . 25693563 . 10.1038/nature14248 . Roadmap Epigenomics Consortium . 4530010 . 2015Natur.518..317. .
- 10.1089/scd.2011.0330. 5729635. Protein Arginine Methyltransferase 6 Regulates Embryonic Stem Cell Identity. 2012. Lee. Yun Hwa. Ma. Hui. Tan. Tuan Zea. Ng. Swee Siang. Soong. Richie. Mori. Seiichi. Fu. Xin-Yuan. Zernicka-Goetz. Magdalena. Wu. Qiang. Stem Cells and Development. 21. 14. 2613–2622. 22455726.
- Web site: Whole-Genome Chromatin IP Sequencing (ChIP-Seq) . Illumina . 23 October 2019.
- Web site: MAINE-Seq/Mnase-Seq . illumina . 23 October 2019.
- Buenrostro. Jason D.. Wu. Beijing. Chang. Howard Y.. Greenleaf. William J.. ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. 2015. 21.29.1–21.29.9. 10.1002/0471142727.mb2129s109. 25559105. Current Protocols in Molecular Biology. 109. 4374986. 9780471142720.
- Schep. Alicia N.. Buenrostro. Jason D.. Denny. Sarah K. . Schwartz . Katja . Sherlock . Gavin . Greenleaf . William J. . Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Research. 25. 11. 2015. 1757–1770. 1088-9051. 10.1101/gr.192294.115. 26314830. 4617971.
- Song. L.. Crawford. G. E.. DNase-seq: A High-Resolution Technique for Mapping Active Gene Regulatory Elements across the Genome from Mammalian Cells. Cold Spring Harbor Protocols. 2010. 2. 2010. pdb.prot5384. 1559-6095. 10.1101/pdb.prot5384. 20150147. 3627383.