In computational complexity theory, Håstad's switching lemma is a key tool for proving lower bounds on the size of constant-depth Boolean circuits. It was first introduced by Johan Håstad to prove that AC0 Boolean circuits of depth k require size
\exp(\Omega(n1/(k-1)))
n
The switching lemma describes the behavior of a depth-2 circuit under random restriction, i.e. when randomly fixing most of the coordinates to 0 or 1. Specifically, from the lemma, it follows that a formula in conjunctive normal form (that is, an AND of ORs) becomes a formula in disjunctive normal form (an OR and ANDs) under random restriction, and vice versa. This "switching" gives the lemma its name.
Consider a width-
w
F=C1\veeC2\vee … \veeCm
C\ell
xi
\negxi
(\negx1\wedgex2)\vee(x2\wedgex3)\vee(x2\wedgex3)
Let
F|Rp
xi
(1-p)/2
\Pr[\operatorname{DT}(F\midRp)\geqt]<C(pw)t,
where
\operatorname{DT}(f)
x
f
Intuitively, the switching lemma holds because DNF formulas shrink significantly under random restriction: when a literal in a clause is set to 0, the whole AND clause evaluates to zero, and therefore can be discarded.
The original proof of the switching lemma involves an argument with conditional probabilities.Arguably simpler proofs have been subsequently given by and . For an introduction, see Chapter 14 in .
The switching lemma is a key tool used for understanding the circuit complexity class AC0, which consists of constant-depth circuits consisting of AND, OR, and NOT. Håstad's initial application of this lemma was to establish tight exponential lower bounds for such circuits computing PARITY, improving on the prior super-polynomial lower bounds of Merrick Furst, James Saxe and Michael Sipser[3] and independently Miklós Ajtai.[4] This is done by applying the switching lemma
d-1
d
The switching lemma is the basis for bounds on the Fourier spectrum of AC0 circuits[5] and algorithms for learning such circuits.[6]
1 | |
\Sigma | |
1 |