Guillain–Barré syndrome explained

Guillain–Barré syndrome
Field:Neurology
Pronounce:
[1]
in French ɡilɛ̃ baʁe/
Synonyms:Guillain–Barré–Strohl syndrome, Landry's paralysis, postinfectious polyneuritis, Acute Inflammatory Demyelinating Polyneuropathy
Symptoms:Muscle weakness beginning in the feet and hands, usually ascending
Complications:Breathing difficulties, heart and blood pressure problems
Onset:Rapid (hours to weeks)
Causes:Typically triggered by an infection; occasionally by surgery and by vaccination
Diagnosis:Based on symptoms, nerve conduction studies, lumbar puncture
Treatment:Supportive care, intravenous immunoglobulin, plasmapheresis
Prognosis:Weeks to years for recovery
Frequency:2 per 100,000 people per year
Deaths:7.5% of those affected

Guillain–Barré syndrome (GBS) is a rapid-onset muscle weakness caused by the immune system damaging the peripheral nervous system.[2] Typically, both sides of the body are involved, and the initial symptoms are changes in sensation or pain often in the back along with muscle weakness, beginning in the feet and hands, often spreading to the arms and upper body.[2] The symptoms may develop over hours to a few weeks.[2] During the acute phase, the disorder can be life-threatening, with about 15% of people developing weakness of the breathing muscles requiring mechanical ventilation. Some are affected by changes in the function of the autonomic nervous system, which can lead to dangerous abnormalities in heart rate and blood pressure.[2]

Although the cause is unknown, the underlying mechanism involves an autoimmune disorder in which the body's immune system mistakenly attacks the peripheral nerves and damages their myelin insulation.[2] Sometimes this immune dysfunction is triggered by an infection or, less commonly, by surgery, and rarely, by vaccination.[2] The diagnosis is usually based on the signs and symptoms through the exclusion of alternative causes and supported by tests such as nerve conduction studies and examination of the cerebrospinal fluid.[2] There are a number of subtypes based on the areas of weakness, results of nerve conduction studies, and the presence of certain antibodies.[3] It is classified as an acute polyneuropathy.[4]

In those with severe weakness, prompt treatment with intravenous immunoglobulins or plasmapheresis, together with supportive care, will lead to good recovery in the majority of cases.[2] Recovery may take weeks to years, with about a third having some permanent weakness.[2] Globally, death occurs in approximately 7.5% of those affected.[4] Guillain–Barré syndrome is rare, at 1 or 2 cases per 100,000 people every year.[2] [5]

The syndrome is named after the French neurologists Georges Guillain and Jean Alexandre Barré, who, together with French physician André Strohl, described the condition in 1916.[6] [7]

Signs and symptoms

The first symptoms of Guillain–Barré syndrome are numbness, tingling, and pain, alone or in combination. This is followed by weakness of the legs and arms that affects both sides equally and worsens over time.[8] [9] The weakness can take half a day to over two weeks to reach maximum severity, and then becomes steady.[9] In one in five people, the weakness continues to progress for as long as four weeks.[3] The muscles of the neck may also be affected, and about half experience involvement of the cranial nerves that supply the head and face; this may lead to weakness of the muscles of the face, swallowing difficulties and sometimes weakness of the eye muscles.[3] In 8%, the weakness affects only the legs (paraplegia or paraparesis).[3] Involvement of the muscles that control the bladder and anus is unusual.[9] In total, about a third of people with Guillain–Barré syndrome continue to be able to walk.[3] Once the weakness has stopped progressing, it persists at a stable level ("plateau phase") before improvement occurs. The plateau phase can take between two days and six months, but the most common duration is a week.[3] Pain-related symptoms affect more than half, and include back pain, painful tingling, muscle pain, and pain in the head and neck relating to irritation of the lining of the brain.[3]

Many people with Guillain–Barré syndrome have experienced the signs and symptoms of an infection in the 3–6 weeks before the onset of the neurological symptoms. This may consist of upper respiratory tract infection (rhinitis, sore throat), or diarrhea.[9]

In children, particularly those younger than six years old, the diagnosis can be difficult and the condition is often initially mistaken (sometimes for up to two weeks) for other causes of pains and difficulty walking, such as viral infections,[3] or bone and joint problems.[10]

On neurological examination, characteristic features are the reduced strength of muscles and reduced or absent tendon reflexes (hypo- or areflexia, respectively). However, a small proportion have normal reflexes in affected limbs before developing areflexia, and some may have exaggerated reflexes.[3] In the Miller Fisher variant of Guillain–Barré syndrome (see below), a triad of weakness of the eye muscles, abnormalities in coordination, as well as absent reflexes can be found.[9] The level of consciousness is normally unaffected in Guillain–Barré syndrome, but the Bickerstaff brainstem encephalitis subtype may feature drowsiness, sleepiness, or coma.[6] [11]

Respiratory failure

A quarter of all people with Guillain–Barré syndrome develop weakness of the breathing muscles leading to respiratory failure, the inability to breathe adequately to maintain healthy levels of oxygen, and/or carbon dioxide in the blood.[3] [9] [12] This life-threatening scenario is complicated by other medical problems such as pneumonia, severe infections, blood clots in the lungs, and bleeding in the digestive tract in 60% of those who require artificial ventilation.[9]

Autonomic dysfunction

The autonomic or involuntary nervous system, which is involved in the control of body functions such as heart rate and blood pressure, is affected in two-thirds of people with Guillain–Barré syndrome, but the impact is variable.[3] Twenty percent may experience severe blood-pressure fluctuations and irregularities in the heart beat, sometimes to the point that the heart beat stops and requires pacemaker-based treatment.[9] Other associated problems are abnormalities in perspiration and changes in the reactivity of the pupils.[6] Autonomic nervous system involvement can affect even those who do not have severe muscle weakness.[6]

Causes

Infection onset

Two-thirds of people with Guillain–Barré syndrome have experienced an infection before the onset of the condition. Most commonly, these are episodes of gastroenteritis or a respiratory tract infection. In many cases, the exact nature of the infection can be confirmed.[3] Approximately 30% of cases are provoked by Campylobacter jejuni bacteria, which cause diarrhea. A further 10% are attributable to cytomegalovirus (CMV, HHV-5). Despite this, only very few people with Campylobacter or CMV infections develop Guillain–Barré syndrome (0.25–0.65 per 1000 and 0.6–2.2 per 1000 episodes, respectively).[9] The strain of Campylobacter involved may determine the risk of GBS; different forms of the bacteria have different lipopolysaccharides on their surface, and some may induce illness (see below) while others will not.[3]

Links between other infections and GBS are less certain. Two other herpes viruses (Epstein–Barr virus/HHV-4 and varicella zoster virus/HHV-3) and the bacterium Mycoplasma pneumoniae have been associated with GBS.[9] GBS is known to occur after influenza, and influenza vaccination has been demonstrated to be associated with a reduced risk.[13] The tropical flaviviral infections dengue fever and Zika virus have also been associated with episodes of GBS.[14] [15] Previous hepatitis E virus infection has been found to be more common in people with GBS.[3] [7]

Vaccine onset

An increased incidence of Guillain–Barré syndrome followed influenza immunization that followed the 1976 swine flu outbreak (H1N1 A/NJ/76); 8.8 cases per million (0.0088 per 1000) recipients developed it as a complication. GBS cases occurred in 362 patients during the 6 weeks after influenza vaccination of 45 million persons, an 8.8-fold increase over normal rates.[16] The 1976 swine flu vaccination-induced GBS was an outlier; small increases in incidence have been observed in subsequent vaccination campaigns, but not to the same extent.[17] The 2009 flu pandemic vaccine against pandemic swine flu virus H1N1/PDM09 did not cause a significant increase in cases. In fact, "studies found a small increase of approximately 1 case per million vaccines above the baseline rate, which is similar to that observed after administration of seasonal influenza vaccines over the past several years."[9] Natural influenza infection is a stronger risk factor for the development of GBS than is influenza vaccination and the vaccination reduced the risk of GBS overall by lowering the risk of catching influenza.[18]

In the United States, GBS after seasonal influenza vaccination is listed on the federal government's vaccine injury table.[19] On March 24, 2021, after reviewing several post-marketing observational studies, where an increased risk of Guillain–Barré syndrome was observed after 42 days following vaccination with the Zoster vaccine Shingrix, the FDA required safety label changes from the manufacturer GlaxoSmithKline to include warnings for risk of Guillain–Barré syndrome.[20]

COVID-19 infection or vaccine related

GBS has been reported in association with COVID-19, and may be a potential neurological complication of the disease.[21] [22] [23] [24] GBS has been reported as a very rare side effect of the Janssen and the Oxford–AstraZeneca COVID-19 vaccine for COVID-19[25] and European Medicines Agency (EMA) had issued warning to the patients and healthcare providers.[26] The incidence of GBS following the vaccination with the Oxford-AstraZeneca vaccine was originally reported as being lower than the incidence of GBS following a COVID-19 infection.[27] More recent studies, however, found no measurable link between COVID-19 infection and GBS, while correlations with a first dose of AstraZeneca or Janssen vaccines were still positive.[28]

COVID-19 has been reported as causing peripheral neuropathy and more recently some evidence of aggravation of autoimmune disorders including GBS.[29]

Drug induced

Zimelidine, an antidepressant, had a very favorable safety profile but as a result of rare case reports of Guillain–Barré syndrome was withdrawn from the market.[30] [31] [32]

Pathophysiology

The nerve dysfunction in Guillain–Barré syndrome is caused by an immune attack on the nerve cells of the peripheral nervous system and their support structures. The nerve cells have their body (the soma) in the spinal cord and a long projection (the axon) that carries electrical nerve impulses to the neuromuscular junction, where the impulse is transferred to the muscle. Axons are wrapped in a sheath of Schwann cells that contain myelin. Between Schwann cells are gaps (nodes of Ranvier) where the axon is exposed.[9] Different types of Guillain–Barré syndrome feature different types of immune attacks. The demyelinating variant (AIDP, see below) features damage to the myelin sheath by white blood cells (T lymphocytes and macrophages); this process is preceded by activation of a group of blood proteins known as complement. In contrast, the axonal variant is mediated by IgG antibodies and complement against the cell membrane covering the axon without direct lymphocyte involvement.[9]

Various antibodies directed at nerve cells have been reported in Guillain–Barré syndrome. In the axonal subtype, these antibodies have been shown to bind to gangliosides, a group of substances found in peripheral nerves. A ganglioside is a molecule consisting of ceramide bound to a small group of hexose-type sugars and containing various numbers of N-acetylneuraminic acid groups. The key four gangliosides against which antibodies have been described are GM1, GD1a, GT1a, and GQ1b, with different antiganglioside antibodies being associated with particular features; for instance, GQ1b antibodies have been linked with Miller Fisher variant GBS and related forms including Bickerstaff encephalitis.[9] The production of these antibodies after an infection probably is the result of molecular mimicry, where the immune system is reacting to microbial substances, but the resultant antibodies also react with substances occurring naturally in the body.[9] [33] After a Campylobacter infection, the body produces antibodies of the IgA class; only a small proportion of people also produce IgG antibodies against bacterial substance cell wall substances (e.g. lipooligosaccharides) that cross react with human nerve cell gangliosides. It is not currently known how this process escapes central tolerance to gangliosides, which is meant to suppress the production of antibodies against the body's own substances. Not all antiganglioside antibodies cause disease, and it has recently been suggested that some antibodies bind to more than one type of epitope simultaneously (heterodimeric binding) and that this determines the response. Furthermore, the development of pathogenic antibodies may depend on the presence of other strains of bacteria in the bowel.[34]

It has been suggested that a poor injection technique may also cause a direct injury to the axillary nerves adjacent to the injection site in deltoid muscle that may lead to peripheral neuropathy. The consequent vaccine transfection and translation in the nerves may spur an immune response against nerve cells potentially causing an autoimmune nerve damage, leading to conditions like Guillain–Barré syndrome.[35]

Diagnosis

The diagnosis of Guillain–Barré syndrome depends on findings such as rapid development of muscle paralysis, absent reflexes, absence of fever, and absence of a likely cause. Cerebrospinal fluid analysis (through a lumbar spinal puncture) and nerve conduction studies are supportive investigations commonly performed in the diagnosis of GBS.[3] [7] [9] Testing for antiganglioside antibodies is often performed, but their contribution to diagnosis is usually limited.[3] Blood tests are generally performed to exclude the possibility of another cause for weakness, such as a low level of potassium in the blood.[9] An abnormally low level of sodium in the blood is often encountered in Guillain–Barré syndrome. This has been attributed to the inappropriate secretion of antidiuretic hormone, leading to relative retention of water.[36]

In many cases, magnetic resonance imaging of the spinal cord is performed to distinguish between Guillain–Barré syndrome and other conditions causing limb weakness, such as spinal cord compression.[3] [9] If an MRI scan shows enhancement of the nerve roots, this may be indicative of GBS.[3] In children, this feature is present in 95% of scans, but it is not specific to Guillain–Barré syndrome, so other confirmation is also needed.[10]

Spinal fluid

Cerebrospinal fluid envelops the brain and the spine, and lumbar puncture or spinal tap is the removal of a small amount of fluid using a needle inserted between the lumbar vertebrae. Characteristic findings in Guillain–Barré syndrome are an elevated protein level, usually greater than 0.55 g/L, and fewer than 10 white blood cells per cubic millimeter of fluid ("albuminocytological dissociation").[37] This pattern distinguishes Guillain–Barré syndrome from other conditions (such as lymphoma and poliomyelitis) in which both the protein and the cell count are elevated. Elevated CSF protein levels are found in approximately 50% of patients in the first 3 days after onset of weakness, which increases to 80% after the first week.[3]

Repeating the lumbar puncture during the disease course is not recommended. The protein levels may rise after treatment has been administered.[3]

Neurophysiology

Directly assessing nerve conduction of electrical impulses can exclude other causes of acute muscle weakness, as well as distinguish the different types of Guillain–Barré syndrome. Needle electromyography (EMG) and nerve conduction studies may be performed. In the first two weeks, these investigations may not show any abnormality.[3] [38] Neurophysiology studies are not required for the diagnosis.[9]

Formal criteria exist for each of the main subtypes of Guillain–Barré syndrome (AIDP and AMAN/AMSAN, see below), but these may misclassify some cases (particularly where there is reversible conduction failure) and therefore changes to these criteria have been proposed.[39] Sometimes, repeated testing may be helpful.[39]

Clinical subtypes

A number of subtypes of Guillain–Barré syndrome are recognized.[3] [39] Despite this, many people have overlapping symptoms that can make the classification difficult in individual cases.[6] [40] All types have partial forms. For instance, some people experience only isolated eye-movement or coordination problems; these are thought to be a subtype of Miller Fisher syndrome and have similar antiganglioside antibody patterns.[11] [40]

TypeSymptomsPopulation affectedNerve conduction studiesAntiganglioside antibodies
Acute inflammatory demyelinating polyradiculoneuropathy (AIDP)Sensory symptoms and muscle weakness, often with cranial nerve weakness and autonomic involvementMost common in Europe and North AmericaDemyelinating polyneuropathyNo clear association
Acute motor axonal neuropathy (AMAN)Isolated muscle weakness without sensory symptoms in less than 10%; cranial nerve involvement uncommonRare in Europe and North America, a substantial proportion (30–65%) in Asia and Central and South America; sometimes called "Chinese paralytic syndrome"Axonal polyneuropathy, normal sensory action potentialGM1a/b, GD1a & GalNac-GD1a
Acute motor and sensory axonal neuropathy (AMSAN)Severe muscle weakness similar to AMAN but with sensory lossAxonal polyneuropathy, reduced or absent sensory action potentialGM1, GD1a
Pharyngeal-cervical-brachial variantWeakness particularly of the throat muscles, and face, neck, and shoulder musclesGenerally normal, sometimes axonal neuropathy in armsMostly GT1a, occasionally GQ1b, rarely GD1a
Miller Fisher syndromeAtaxia, eye muscle weakness, areflexia but usually no limb weaknessThis variant occurs more commonly in men than in women (2:1 ratio). Cases typically occur in the spring and the average age of occurrence is 43 years old.[41] Generally normal, sometimes discrete changes in sensory conduction or H-reflex detectedGQ1b, GT1a

Other diagnostic entities are often included in the spectrum of Guillain–Barré syndrome. Bickerstaff's brainstem encephalitis (BBE), for instance, is part of the group of conditions now regarded as forms of Miller Fisher syndrome (anti-GQ1b antibody syndrome),[11] as well as a related condition labelled "acute ataxic hypersomnolence"[42] where coordination problems and drowsiness are present but no muscle weakness can be detected.[40] BBE is characterized by the rapid onset of ophthalmoplegia, ataxia, and disturbance of consciousness, and may be associated with absent or decreased tendon reflexes and as well as Babinski's sign.[40] The course of the disease is usually monophasic, but recurrent episodes have been reported. MRI abnormalities in the brainstem have been reported in 11%.[11]

Whether isolated acute sensory loss can be regarded as a form of Guillain–Barré syndrome is a matter of dispute; this is a rare occurrence compared to GBS with muscle weakness but no sensory symptoms.[38]

Treatment

Immunotherapy

Plasmapheresis and intravenous immunoglobulins (IVIG) are the two main immunotherapy treatments for GBS. Plasmapheresis attempts to reduce the body's attack on the nervous system by filtering antibodies out of the bloodstream.[43] Similarly, administration of IVIG neutralizes harmful antibodies and inflammation. These two treatments are equally effective, but a combination of the two is not significantly better than either alone.[44] Plasmapheresis speeds recovery when used within four weeks of the onset of symptoms.[45] IVIG works as well as plasmapheresis when started within two weeks of the onset of symptoms, and has fewer complications.[45] IVIG is usually used first because of its ease of administration and safety; the risks include occasionally causing liver inflammation, or in rare cases, kidney failure.[46] Glucocorticoids alone have not been found to be effective in speeding recovery and could potentially delay recovery.[47]

Respiratory failure

Respiratory failure may require intubation of the trachea and breathing support through mechanical ventilation, generally on an intensive care unit. The need for ventilatory support can be anticipated by measurement of two spirometry-based breathing tests: the forced vital capacity (FVC) and the negative inspiratory force (NIF). An FVC of less than 15 mL per kilogram body weight or an NIF of less than 60 cmH2O are considered markers of severe respiratory failure.[48]

Pain

While pain is common in people with Guillain–Barré syndrome, studies comparing different types of pain medication are insufficient to make a recommendation as to which should be used.[49]

Rehabilitation

Following the acute phase, around 40% of people require intensive rehabilitation with the help of a multidisciplinary team to focus on improving activities of daily living (ADLs).[50] Studies into the subject have been limited, but it is likely that intensive rehabilitation improves long-term symptoms.[51] Teams may include physical therapists, occupational therapists, speech language pathologists, social workers, psychologists, other allied health professionals and nurses. The team usually works under the supervision of a neurologist or rehabilitation physician directing treatment goals.[50]

Physiotherapy interventions include strength, endurance, and gait training with graduated increases in mobility, maintenance of posture and alignment as well as joint function. Occupational therapy aims to improve everyday function with domestic and community tasks as well as driving and work. Home modifications, gait aids, orthotics, and splints may be provided.[50] Speech-language pathology input may be required in those with speech and swallowing problems, as well as to support communication in those who require ongoing breathing support (often through a tracheostomy). Nutritional support may be provided by the team and by dietitians. Psychologists may provide counselling and support. Psychological interventions may also be required for anxiety, fear, and depression.[50]

Ongoing specialist community support, information, advice, and guidance is available from a range of Charities, Non-Government Organisations (NGOs), and Patient Advisory Groups around the world. In the United Kingdom this is provided by GAIN (Guillain–Barré and Associated Inflammatory Neuropathies),[52] in the USA it is provided by GBS/CIDP Foundation International,[53] and in The European Union by a range of organisations under the umbrella of EPODIN (European Patient Organization for Disimmune & Inflammatory Neuropathies).[54]

Prognosis

Guillain–Barré syndrome can lead to death as a result of many complications: severe infections, blood clots, and cardiac arrest likely due to autonomic neuropathy. Despite optimum care, this occurs in about 5% of cases.[9]

There is a variation in the rate and extent of recovery.[9] The prognosis of Guillain–Barré syndrome is determined mainly by age (those over 40 may have a poorer outcome), and by the severity of symptoms after two weeks. Furthermore, those who experienced diarrhea before the onset of the disease have a worse prognosis.[12] On the nerve conduction study, the presence of conduction block predicts poorer outcome at 6 months.[12] In those who have received intravenous immunoglobulins, a smaller increase in IgG in the blood two weeks after administration is associated with poorer mobility outcomes at six months than those whose IgG level increased substantially.[12] If the disease continues to progress beyond four weeks, or there are multiple fluctuations in the severity (more than two in eight weeks), the diagnosis may be chronic inflammatory demyelinating polyneuropathy, which is treated differently.[3]

In research studies, the outcome from an episode of Guillain–Barré syndrome is recorded on a scale from 0 to 6, where 0 denotes completely healthy; 1 very minor symptoms but able to run; 2 able to walk but not to run; 3 requiring a stick or other support; 4 confined to bed or chair; 5 requiring long-term respiratory support; 6 death.[55]

The health-related quality of life (HRQL) after an attack of Guillain–Barré syndrome can be significantly impaired. About a fifth are unable to walk unaided after six months, and many experience chronic pain, fatigue and difficulty with work, education, hobbies and social activities.[56] HRQL improves significantly in the first year.[56]

Epidemiology

See also: List of people with Guillain–Barré syndrome. In Western countries, the number of new episodes per year has been estimated to be between 0.89 and 1.89 cases per 100,000 people. Children and young adults are less likely to be affected than the elderly: the relative risk increases by 20% for every decade of life.[5] Men are more likely to develop Guillain–Barré syndrome than women; the relative risk for men is 1.78 compared to women.[5] [9]

The distribution of subtypes varies between countries. In Europe and the United States, 60–80% of people with Guillain–Barré syndrome have the demyelinating subtype (AIDP), and AMAN affects only a small number (6–7%). In Asia and Central and South America, that proportion is significantly higher (30–65%). This may be related to the exposure to different kinds of infection, but also the genetic characteristics of that population.[3] Miller Fisher variant is thought to be more common in Southeast Asia.[9] [11]

History

Jean-Baptiste Octave Landry first described the disorder in 1859.[57] In 1916, Georges Guillain, Jean Alexandre Barré, and André Strohl diagnosed two soldiers with the illness and described the key diagnostic abnormality—albuminocytological dissociation—of increased spinal fluid protein concentration but a normal cell count.[6] [7] [58]

C. Miller Fisher described the variant that bears his name in 1956.[11] [59] British neurologist Edwin Bickerstaff described the encephalitis type in 1951 and made further contributions with another paper in 1957.[11] [60] [61] Guillain had reported on some of these features before their full description in 1938.[11] Further subtypes have been described since then, such as the form featuring pure ataxia and the type causing pharyngeal-cervical-brachial weakness.[11] The axonal subtype was first described in 1986.[62]

Diagnostic criteria were developed in the late 1970s after the series of cases associated with swine flu vaccination. These were refined in 1990.[3] [63] The case definition was revised by the Brighton Collaboration for vaccine safety in 2009,[64] but is mainly intended for research.[3] Plasma exchange was first used in 1978, and its benefit was confirmed in larger studies in 1985.[65] Intravenous immunoglobulins were introduced in 1988, and studies in the early 1990s demonstrated that they were no less effective than plasma exchange.[65]

Research directions

The understanding of the disease mechanism of Guillain–Barré syndrome has evolved in recent years.[38] Development of new treatments has been limited since immunotherapy was introduced in the 1980s and 1990s.[38] [65] Current research is aimed at demonstrating whether some people who have received IVIg might benefit from a second course if the antibody levels measured in blood after treatment have shown only a small increase.[12] [65] Studies of the immunosuppressive drugs mycophenolate mofetil, brain-derived neurotrophic factor and interferon beta (IFN-β) have not demonstrated benefit to support their widespread use.[65]

An animal model (experimental autoimmune neuritis in rats) is often used for studies, and some agents have shown promise: glatiramer acetate, quinupramine, fasudil (an inhibitor of the Rho-kinase enzyme),[38] and the heart drug flecainide.[65] An antibody targeted against the anti-GD3 antiganglioside antibody has shown benefit in laboratory research.[38] Given the role of the complement system in GBS, it has been suggested that complement inhibitors (such as the drug eculizumab) may be effective.[65]

In animals it is called acute polyradiculoneuritis or "coonhound paralysis", and may onset in the coonhound 7 to 10 days after transmission from raccoons. If the coonhound has not been around raccoons, the disease is called acute idiopathic polyradiculoneuritis.[66] [67]

Further reading

External links

Notes and References

  1. Web site: Definition of GUILLAIN-BARRÉ SYNDROME . 2023-01-27 . www.merriam-webster.com . en.
  2. Web site: Guillain–Barré Syndrome Fact Sheet. NIAMS. 29 August 2022. June 1, 2016. live. https://web.archive.org/web/20160805044252/http://www.ninds.nih.gov/disorders/gbs/detail_gbs.htm. 5 August 2016.
  3. van den Berg B, Walgaard C, Drenthen J, Fokke C, Jacobs BC, van Doorn PA . Guillain-Barré syndrome: pathogenesis, diagnosis, treatment and prognosis . Nature Reviews. Neurology . 10 . 8 . 469–82 . August 2014 . 25023340 . 10.1038/nrneurol.2014.121 . 25154778 . free .
  4. Book: Ferri . Fred F. . vanc . Ferri's Clinical Advisor 2017: 5 Books in 1. 2016. Elsevier Health Sciences. 9780323448383. 529. en. live. https://web.archive.org/web/20160821222609/https://books.google.ca/books?id=rRhCDAAAQBAJ&pg=PA529. 2016-08-21.
  5. Sejvar JJ, Baughman AL, Wise M, Morgan OW . Population incidence of Guillain-Barré syndrome: a systematic review and meta-analysis . Neuroepidemiology . 36 . 2 . 123–33 . 2011 . 21422765 . 5703046 . 10.1159/000324710 .
  6. van Doorn PA, Ruts L, Jacobs BC . Clinical features, pathogenesis, and treatment of Guillain-Barré syndrome . The Lancet. Neurology . 7 . 10 . 939–50 . October 2008 . 18848313 . 10.1016/S1474-4422(08)70215-1 . 9307245 .
  7. Eldar AH, Chapman J . Guillain Barré syndrome and other immune mediated neuropathies: diagnosis and classification . Autoimmunity Reviews . 13 . 4–5 . 525–30 . April 2014 . 24434363 . 10.1016/j.autrev.2014.01.033 .
  8. Willison HJ, Jacobs BC, van Doorn PA . Guillain-Barré syndrome . Lancet . 388 . 10045 . 717–27 . August 2016 . 26948435 . 10.1016/S0140-6736(16)00339-1 . free .
  9. Yuki N, Hartung HP . Guillain-Barré syndrome . The New England Journal of Medicine . 366 . 24 . 2294–304 . June 2012 . 22694000 . 10.1056/NEJMra1114525 .
  10. Ryan MM . Pediatric Guillain-Barré syndrome . Current Opinion in Pediatrics . 25 . 6 . 689–93 . December 2013 . 24240288 . 10.1097/MOP.0b013e328365ad3f . 34011924 .
  11. Shahrizaila N, Yuki N . Bickerstaff brainstem encephalitis and Fisher syndrome: anti-GQ1b antibody syndrome . Journal of Neurology, Neurosurgery, and Psychiatry . 84 . 5 . 576–83 . May 2013 . 22984203 . 10.1136/jnnp-2012-302824 . free .
  12. van Doorn PA, Kuitwaard K, Walgaard C, van Koningsveld R, Ruts L, Jacobs BC . IVIG treatment and prognosis in Guillain-Barré syndrome . Journal of Clinical Immunology . 30 . S74-8 . May 2010 . Suppl 1 . 20396937 . 2883091 . 10.1007/s10875-010-9407-4 .
  13. Vellozzi . C. . Iqbal . S. . Broder . K. . Guillain-Barre Syndrome, Influenza, and Influenza Vaccination: The Epidemiologic Evidence . Clinical Infectious Diseases . 15 April 2014 . 58 . 8 . 1149–1155 . 10.1093/cid/ciu005 . 24415636. free .
  14. Carod-Artal FJ, Wichmann O, Farrar J, Gascón J . Neurological complications of dengue virus infection . The Lancet. Neurology . 12 . 9 . 906–919 . September 2013 . 23948177 . 10.1016/S1474-4422(13)70150-9 . 13948773 .
  15. Gatherer D, Kohl A . Zika virus: a previously slow pandemic spreads rapidly through the Americas . The Journal of General Virology . 97 . 2 . 269–273 . February 2016 . 26684466 . 10.1099/jgv.0.000381 . free .
  16. 10.1093/aje/kws194. Invited Commentary: Influenza Vaccine and Guillain-Barre Syndrome--Is There a Risk?. 2012. Nelson. K. E.. American Journal of Epidemiology. 175. 11. 1129–1132. 22582208. free.
  17. Lehmann HC, Hartung HP, Kieseier BC, Hughes RA . Guillain-Barré syndrome after exposure to influenza virus . The Lancet. Infectious Diseases . 10 . 9 . 643–51 . September 2010 . 20797646 . 10.1016/S1473-3099(10)70140-7 .
  18. DeStefano F, Bodenstab HM, Offit PA . Principal controversies in vaccine safety in the United States . Clinical Infectious Diseases . 69 . 4 . 726–731 . August 2019 . 30753348 . 10.1093/cid/ciz135 . free .
  19. Web site: Vaccine Injury Table - HRSA. March 22, 2017. HRSA. October 23, 2019.
  20. Web site: New safety communication regarding Shingrix vaccine . U.S. Food and Drug Administration . 2021-03-25 . 2021-10-18.
  21. Ellul MA, Benjamin L, Singh B, Lant S, Michael BD, Easton A, Kneen R, Defres S, Sejvar J, Solomon T . 6 . Neurological associations of COVID-19 . The Lancet. Neurology . 19 . 9 . 767–783 . September 2020 . 32622375 . 10.1016/S1474-4422(20)30221-0 . 7332267 . free .
  22. Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni MG, Franciotta D, Baldanti F, Daturi R, Postorino P, Cavallini A, Micieli G . 6 . Guillain-Barré Syndrome Associated with SARS-CoV-2 . The New England Journal of Medicine . 382 . 26 . 2574–2576 . June 2020 . 32302082 . 7182017 . 10.1056/NEJMc2009191 .
  23. Paterson RW, Brown RL, Benjamin L, Nortley R, Wiethoff S, Bharucha T, Jayaseelan DL, Kumar G, Raftopoulos RE, Zambreanu L, Vivekanandam V, Khoo A, Geraldes R, Chinthapalli K, Boyd E, Tuzlali H, Price G, Christofi G, Morrow J, McNamara P, McLoughlin B, Lim ST, Mehta PR, Levee V, Keddie S, Yong W, Trip SA, Foulkes AJ, Hotton G, Miller TD, Everitt AD, Carswell C, Davies NW, Yoong M, Attwell D, Sreedharan J, Silber E, Schott JM, Chandratheva A, Perry RJ, Simister R, Checkley A, Longley N, Farmer SF, Carletti F, Houlihan C, Thom M, Lunn MP, Spillane J, Howard R, Vincent A, Werring DJ, Hoskote C, Jäger HR, Manji H, Zandi MS . 6 . The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings . Brain . July 2020 . 143 . 10 . 3104–3120 . 32637987 . 10.1093/brain/awaa240 . 7454352 . free .
  24. Abu-Rumeileh. Samir. Abdelhak. Ahmed. Foschi. Matteo. Tumani. Hayrettin. Otto. Markus. 2021. Guillain-Barré syndrome spectrum associated with COVID-19: an up-to-date systematic review of 73 cases. Journal of Neurology. 268. 4. 1133–1170. 10.1007/s00415-020-10124-x. 1432-1459. 7445716. 32840686.
  25. Web site: COVID-19 Vaccine Janssen: Guillain-Barré syndrome listed as a very rare side effect . European Medicines Agency . 22 July 2021 . 13 September 2021.
  26. Web site: Autoimmune damage to the nerves following Covid vaccines: EMA issued warning to patients and healthcare professionals . The BMJ . 2024-07-31 . 2024-08-06.
  27. Patone. Martina. Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection. Nature Medicine. 2021. 27. 12. 2144–2153. 10.1038/s41591-021-01556-7. 34697502. 8629105.
  28. Web site: UCL . 2022-05-30 . Rise in Guillain-Barré syndrome following AstraZeneca vaccine . 2022-06-22 . UCL News . en.
  29. Finsterer . Josef . Scorza . Fulvio Alexandre . Scorza . Carla Alessandra . Fiorini . Ana Claudia . Peripheral neuropathy in COVID-19 is due to immune-mechanisms, pre-existing risk factors, anti-viral drugs, or bedding in the Intensive Care Unit . Arquivos de Neuro-Psiquiatria . 19 July 2021 . 79 . 10 . 924–928 . 10.1590/0004-282X-ANP-2021-0030 . 34287509 . 236157120 . free .
  30. Fagius J, Osterman PO, Sidén A, Wiholm BE . Guillain-Barré syndrome following zimeldine treatment . Journal of Neurology, Neurosurgery, and Psychiatry . 48 . 1 . 65–9 . January 1985 . 3156214 . 1028185 . 10.1136/jnnp.48.1.65 .
  31. Carlsson A . A paradigm shift in brain research . Science . 294 . 5544 . 1021–4 . November 2001 . 11691978 . 10.1126/science.1066969 . 2001Sci...294.1021C . 24365669 .
  32. Web site: The Rise and Sudden Fall of Zimelidine: The First SSRI | 2020-11-16 | CARLAT PUBLISHING. www.thecarlatreport.com.
  33. Kuwabara S, Yuki N . Axonal Guillain-Barré syndrome: concepts and controversies . The Lancet. Neurology . 12 . 12 . 1180–8 . December 2013 . 24229616 . 10.1016/S1474-4422(13)70215-1 . 35101547 .
  34. Willison HJ, Goodyear CS . Glycolipid antigens and autoantibodies in autoimmune neuropathies . Trends in Immunology . 34 . 9 . 453–9 . September 2013 . 23770405 . 10.1016/j.it.2013.05.001 .
  35. Merchant . Hamid . 2022-07-01 . Inadvertent injection of COVID-19 vaccine into deltoid muscle vasculature may result in vaccine distribution to distance tissues and consequent adverse reactions . Postgraduate Medical Journal . en . 98 . 1161 . e5 . 10.1136/postgradmedj-2021-141119 . 0032-5473 . 34588294. 238229239 . free .
  36. Spasovski G, Vanholder R, Allolio B, Annane D, Ball S, Bichet D, Decaux G, Fenske W, Hoorn EJ, Ichai C, Joannidis M, Soupart A, Zietse R, Haller M, van der Veer S, Van Biesen W, Nagler E . 6 . Clinical practice guideline on diagnosis and treatment of hyponatraemia . European Journal of Endocrinology . 170 . 3 . G1-47 . March 2014 . 24569125 . 10.1530/EJE-13-1020 . free .
  37. Ropper AH . The Guillain-Barré syndrome . The New England Journal of Medicine . 326 . 17 . 1130–6 . April 1992 . 1552914 . 10.1056/NEJM199204233261706 .
  38. Rinaldi S . Update on Guillain-Barré syndrome . Journal of the Peripheral Nervous System . 18 . 2 . 99–112 . June 2013 . 23781958 . 10.1111/jns5.12020 . 23577086 .
  39. Uncini A, Kuwabara S . Electrodiagnostic criteria for Guillain-Barrè syndrome: a critical revision and the need for an update . Clinical Neurophysiology . 123 . 8 . 1487–95 . August 2012 . 22480600 . 10.1016/j.clinph.2012.01.025 . 33276521 .
  40. Wakerley BR, Uncini A, Yuki N . Guillain-Barré and Miller Fisher syndromes--new diagnostic classification . Nature Reviews. Neurology . 10 . 9 . 537–44 . September 2014 . 25072194 . 10.1038/nrneurol.2014.138 . 205515884 .
  41. Mori M, Kuwabara S, Yuki N . Fisher syndrome: clinical features, immunopathogenesis and management . Expert Review of Neurotherapeutics . 12 . 1 . 39–51 . January 2012 . 22149656 . 10.1586/ern.11.182 . 5597853 .
  42. Wakerley . BR . Soon . D . Yuki . N . Atypical Bickerstaff brainstem encephalitis: ataxic hypersomnolence without ophthalmoplegia . J Neurol Neurosurg Psychiatry . 2013 . 84 . 11 . 1206–7 . 10.1136/jnnp-2013-304993. 23564757 . 22756453 .
  43. Liu . Shuang . Dong . Chaoling . Ubogu . Eroboghene Ekamereno . Immunotherapy of Guillain-Barré syndrome . Human Vaccines & Immunotherapeutics . 14 . 11 . 2021-06-02 . 2568–2579 . 29953326 . 10.1080/21645515.2018.1493415 . 6314401 .
  44. Hughes RA, Swan AV, van Doorn PA . Intravenous immunoglobulin for Guillain-Barré syndrome . The Cochrane Database of Systematic Reviews . CD002063 . September 2014 . 2019 . 10 . 25238327 . 6781841 . 10.1002/14651858.CD002063.pub6 .
  45. Hughes RA, Wijdicks EF, Barohn R, Benson E, Cornblath DR, Hahn AF, Meythaler JM, Miller RG, Sladky JT, Stevens JC . 6 . Practice parameter: immunotherapy for Guillain-Barré syndrome: report of the Quality Standards Subcommittee of the American Academy of Neurology . Neurology . 61 . 6 . 736–40 . September 2003 . 14504313 . 10.1212/WNL.61.6.736 . free .
  46. Dantal J . Intravenous immunoglobulins: in-depth review of excipients and acute kidney injury risk . American Journal of Nephrology . 38 . 4 . 275–84 . October 2013 . 24051350 . 10.1159/000354893 . free .
  47. Hughes. Richard Ac. Brassington. Ruth. Gunn. Angela A.. van Doorn. Pieter A.. 2016-10-24. Corticosteroids for Guillain-Barré syndrome. The Cochrane Database of Systematic Reviews. 2016. 10. CD001446. 10.1002/14651858.CD001446.pub5. 1469-493X. 6464149. 27775812.
  48. Dimachkie MM, Barohn RJ . Guillain-Barré syndrome and variants . Neurologic Clinics . 31 . 2 . 491–510 . May 2013 . 23642721 . 3939842 . 10.1016/j.ncl.2013.01.005 .
  49. Liu. Jia. Wang. Lu-Ning. McNicol. Ewan D.. 2015-04-09. Pharmacological treatment for pain in Guillain-Barré syndrome. The Cochrane Database of Systematic Reviews. 2015 . 4. CD009950. 10.1002/14651858.CD009950.pub3. 1469-493X. 6361619. 25855461.
  50. Khan F, Amatya B . Rehabilitation interventions in patients with acute demyelinating inflammatory polyneuropathy: a systematic review . European Journal of Physical and Rehabilitation Medicine . 48 . 3 . 507–22 . September 2012 . 22820829 . live . https://web.archive.org/web/20150826223515/http://www.minervamedica.it/en/journals/europa-medicophysica/article.php?cod=R33Y2012N03A0507 . 2015-08-26 .
  51. Khan F, Ng L, Amatya B, Brand C, Turner-Stokes L . Multidisciplinary care for Guillain-Barré syndrome . The Cochrane Database of Systematic Reviews . 10 . CD008505 . October 2010 . 20927774 . 10.1002/14651858.CD008505.pub2 .
  52. Web site: GAIN Charity: Guillain-Barré Syndrome (GBS) & Associated Neuropathies . 2024-06-27 . GAIN . en-GB.
  53. Web site: Home . 2024-06-27 . GBS/CIDP Foundation International . en-US.
  54. Web site: Epodin . 2024-06-27 . Epodin . en-US.
  55. Hughes RA, Swan AV, Raphaël JC, Annane D, van Koningsveld R, van Doorn PA . Immunotherapy for Guillain-Barré syndrome: a systematic review . Brain . 130 . Pt 9 . 2245–57 . September 2007 . 17337484 . 10.1093/brain/awm004 . free .
  56. Darweesh SK, Polinder S, Mulder MJ, Baena CP, van Leeuwen N, Franco OH, Jacobs BC, van Doorn PA . 6 . Health-related quality of life in Guillain-Barré syndrome patients: a systematic review . Journal of the Peripheral Nervous System . 19 . 1 . 24–35 . March 2014 . 24456426 . 10.1111/jns5.12051 . 6822 . free .
  57. Landry . Jean-Baptiste . vanc . Note sur la paralysie ascendante aiguë . Gazette Hebdomadaire de Médecine et de Chirurgie . 1859 . 6 . 472–474, 486–488 . live . https://web.archive.org/web/20170227205021/https://books.google.com/books?id=rwxAAAAAcAAJ&pg=PA486 . 2017-02-27 .
  58. Guillain G, Barré J, Strohl A . Sur un syndrome de radiculonévrite avec hyperalbuminose du liquide céphalo-rachidien sans réaction cellulaire. Remarques sur les caractères cliniques et graphiques des réflexes tendineux . On a syndrome of radiculoneuritis with hypoalbuminemia of the cerebrospinal fluid without cellular reaction. Remarks on the clinical and graphical characters of the tendon reflexes . fr . Bulletins et Mémoires de la Société des Médecins des Hôpitaux de Paris. 1916. 40. 1462–70 . .
  59. Fisher M . An unusual variant of acute idiopathic polyneuritis (syndrome of ophthalmoplegia, ataxia and areflexia) . The New England Journal of Medicine . 255 . 2 . 57–65 . July 1956 . 13334797 . 10.1056/NEJM195607122550201 .
  60. Bickerstaff ER, Cloake PC . Mesencephalitis and rhombencephalitis . British Medical Journal . 2 . 4723 . 77–81 . July 1951 . 14848512 . 2069534 . 10.1136/bmj.2.4723.77 .
  61. Bickerstaff ER . Brain-stem encephalitis; further observations on a grave syndrome with benign prognosis . British Medical Journal . 1 . 5032 . 1384–7 . June 1957 . 13436795 . 1973653 . 10.1136/bmj.1.5032.1384 .
  62. Compston . Alastair . Recurrent and chronic relapsing Guillain-Barré polyneuritis by P.K. Thomas, R.G. Lascelles, J.F. Hallpike and R.L. Hewer. From the Institute of Neurology and National Hospital, Queen Square, the Royal National Orthopaedic Hospital, and Guy's Hospital, London. Brain 1969; 92: 589–606; with An acute axonal form of Guillain-Barré polyneuropathy by T.E. Feasby, J.J. Gilbert, W.F. Brown, C.F. Bolton, A.F. Hahn, W.F. Koopman and D.W. Zochodne. Brain 1986; 109: 1115–1126 . Brain . July 2016 . 139 . 7 . 2096–2100 . 10.1093/brain/aww127 . free .
  63. Asbury AK, Cornblath DR . Assessment of current diagnostic criteria for Guillain-Barré syndrome . Annals of Neurology . 27 Suppl . S21-4 . 1990 . 2194422 . 10.1002/ana.410270707 . 39483795 .
  64. Sejvar JJ, Kohl KS, Gidudu J, Amato A, Bakshi N, Baxter R, Burwen DR, Cornblath DR, Cleerbout J, Edwards KM, Heininger U, Hughes R, Khuri-Bulos N, Korinthenberg R, Law BJ, Munro U, Maltezou HC, Nell P, Oleske J, Sparks R, Velentgas P, Vermeer P, Wiznitzer M . 6 . Guillain-Barré syndrome and Fisher syndrome: case definitions and guidelines for collection, analysis, and presentation of immunization safety data . Vaccine . 29 . 3 . 599–612 . January 2011 . 20600491 . 10.1016/j.vaccine.2010.06.003 .
  65. Walgaard C, Jacobs BC, van Doorn PA . Emerging drugs for Guillain-Barré syndrome . Expert Opinion on Emerging Drugs . 16 . 1 . 105–20 . March 2011 . 21352072 . 10.1517/14728214.2011.531699 . 3162151 .
  66. Kim . Se-Hoon . Choi . Seo-In . Song . Kun-Ho . Seo . Kyoung-Won . Two cases of acute polyradiculoneuritis in dogs consuming a raw poultry diet . Journal of Veterinary Medical Science . 2021 . 83 . 3 . 465–468 . 10.1292/jvms.20-0522 . 33518606 . 8025411 .
  67. Web site: Coonhound Paralysis . VCA Animal Hospital .