Kak{p
ak{p}
It was introduced by, but there was a mistake in this original version that was found and corrected by . The theorem considered by Grunwald and Wang was more general than the one stated above as they discussed the existence of cyclic extensions with certain local properties, and the statement about nth powers is a consequence of this.
, a student of Helmut Hasse, gave an incorrect proof of the erroneous statement that an element in a number field is an nth power if it is an nth power locally almost everywhere. gave another incorrect proof of this incorrect statement. However discovered the following counter-example: 16 is a p-adic 8th power for all odd primes p, but is not a rational or 2-adic 8th power. In his doctoral thesis written under Emil Artin, Wang gave and proved the correct formulation of Grunwald's assertion, by describing the rare cases when it fails. This result is what is now known as the Grunwald–Wang theorem. The history of Wang's counterexample is discussed by
Grunwald's original claim that an element that is an nth power almost everywhere locally is an nth power globally can fail in two distinct ways: the element can be an nth power almost everywhere locally but not everywhere locally, or it can be an nth power everywhere locally but not globally.
The element 16 in the rationals is an 8th power at all places except 2, but is not an 8th power in the 2-adic numbers.
It is clear that 16 is not a 2-adic 8th power, and hence not a rational 8th power, since the 2-adic valuation of 16 is 4 which is not divisible by 8.
Generally, 16 is an 8th power in a field K if and only if the polynomial
X8-16
X8-16=(X4-4)(X4+4)=(X2-2)(X2+2)(X2-2X+2)(X2+2X+2).
Thus, 16 is an 8th power in K if and only if 2, -2 or -1 is a square in K. Let p be any odd prime. It follows from the multiplicativity of the Legendre symbol that 2, -2 or -1 is a square modulo p. Hence, by Hensel's lemma, 2, -2 or -1 is a square in
Qp
16 is not an 8th power in
Q(\sqrt{7})
Qp(\sqrt{7})
Q2(\sqrt{7})=Q2(\sqrt{-1})
Wang's counterexample has the following interesting consequence showing that one cannot always find a cyclic Galois extension of a given degree of a number field in which finitely many given prime places split in a specified way:
There exists no cyclic degree 8 extension
K/Q
K2/Q2
For any
s\geq2
η | \right)+\exp\left(- | ||||
|
2\pii | \right)=2\cos\left( | |
2s |
2\pi | |
2s |
\right).
Note that the
2s
Q | |
2s |
=Q(i,ηs).
A field is called s-special if it contains
ηs
i
ηs+1
iηs+1
Consider a number field K and a natural number n. Let S be a finite (possibly empty) set of primes of K and put
K(n,S):=\{x\inK\midx\inKak{p
The Grunwald–Wang theorem says that
K(n,S)=Kn
unless we are in the special case which occurs when the following two conditions both hold:
K
s
2s+1
S
S0
ak{p}
Kak{p
In the special case the failure of the Hasse principle is finite of order 2: the kernel of
K x /K x \to\prodak{p\not\in
x n | |
S}K | |
ak{p} |
is Z/2Z, generated by the element η.
The field of rational numbers
K=Q
η2=0
i
η3=\sqrt{2}
iη3=\sqrt{-2}
S0=\{2\}
Q
The field
K=Q(\sqrt{7})
S0=\emptyset