In mathematics, in the field of homological algebra, the Grothendieck spectral sequence, introduced by Alexander Grothendieck in his Tôhoku paper, is a spectral sequence that computes the derived functors of the composition of two functors
G\circF
F
G
If
F\colonl{A}\tol{B}
G\colonl{B}\tol{C}
l{A}
l{B}
F
G
A
l{A}
pq | |
E | |
2 |
=({\rmR}pG\circ{\rmR}qF)(A)\Longrightarrow{\rmR}p+q(G\circF)(A),
where
{\rmR}pG
G
\Longrightarrow
The exact sequence of low degrees reads
0\to{\rmR}1G(FA)\to{\rmR}1(GF)(A)\toG({\rmR}1F(A))\to{\rmR}2G(FA)\to{\rmR}2(GF)(A).
See main article: Leray spectral sequence. If and are topological spaces, let and be the category of sheaves of abelian groups on and , respectively.
f\colonX\toY
f*\colonAb(X)\toAb(Y)
\GammaX\colonAb(X)\toAb
\GammaY\colonAb(Y)\toAb.
\GammaY\circf*=\GammaX
f*
\GammaY
f-1
Hp(Y,{\rmR}q
p+q | |
f | |
*l{F})\impliesH |
(X,l{F})
l{F}
X
(X,l{O})
p,q | |
E | |
2 |
=\operatorname{H}p(X;
q | |
l{E}xt | |
l{O |
Rp\Gamma(X,-)=\operatorname{H}p(X,-)
Rql{H}oml{O
Rn\Gamma(X,l{H}oml{O
l{H}oml{O
l{O}
\Gamma(X,-)
We shall use the following lemma:
Proof: Let
Zn,Bn+1
d:Kn\toKn+1
0\toZn\toKn\overset{d}\toBn+1\to0,
Bn+1
0\toBn\toZn\toHn(K\bullet)\to0.
0\toG(Bn)\toG(Zn)\toG(Hn(K\bullet))\to0.
0\toG(Zn)\toG(Kn)\overset{G(d)}\toG(Bn+1)\to0.
\square
We now construct a spectral sequence. Let
A0\toA1\to …
\phip
F(Ap)\toF(Ap+1)
0\to\operatorname{ker}\phip\toF(Ap)\overset{\phip}\to\operatorname{im}\phip\to0.
J0\toJ1\to …
K0\toK1\to …
Ip,=J ⊕ K
F(Ap)
0\toF(A\bullet)\toI\bullet,\toI\bullet,\to … .
I0,\toI1,\to …
Now, the double complex
p,q | |
E | |
0 |
=G(Ip,)
{}\prime
p,q | |
E | |
1 |
=Hq(G(Ip,))=RqG(F(Ap))
F(Ap)
{}\prime
n | |
E | |
2 |
=Rn(G\circF)(A)
{}\primeE2={}\primeEinfty
{}\prime
p,q | |
E | |
1 |
=Hq(G(I\bullet,))=G(Hq(I\bullet,)).
Hq(I\bullet,)\toHq(I\bullet,)\to …
Hq(F(A\bullet))=RqF(A)
{}\prime
p,q | |
E | |
2 |
=RpG(RqF(A)).
{}\primeEr
{}\primeEr
\square