In mathematics, the Grothendieck inequality states that there is a universal constant
KG
|\sumi,jMijsitj|\le1
for all (real or complex) numbers si, tj of absolute value at most 1, then
|\sumi,jMij\langleSi,Tj\rangle|\leKG
for all vectors Si, Tj in the unit ball B(H) of a (real or complex) Hilbert space H, the constant
KG
KG(d)
R | |
K | |
G |
(d)
C | |
K | |
G |
(d)
The Grothendieck inequality and Grothendieck constants are named after Alexander Grothendieck, who proved the existence of the constants in a paper published in 1953.
Let
A=(aij)
m x n
A
(Rm,\| ⋅ \|p)
(Rn,\| ⋅ \|q)
1\leqp,q\leqinfty
(p\toq)
A
\|A\|p=
max | |
x\inRn:\|x\|p=1 |
\|Ax\|q.
If
p=q
\|A\|p
One can consider the following question: For what value of
p
q
\|A\|p
A
p
\{x\inRn:\|x\|p\leq1\}
q
\|Ax\|q
\|x\|p
p=1,2,\ldots,infty
\|A\|infty\geq\|A\|p
1\leqp,q\leqinfty
One way to compute
\|A\|infty
\begin{align}max& \sumi,Aijxiyj\ s.t.& (x,y)\in\{-1,1\}m\end{align}
To see this, note that
\sumi,Aijxiyj=\sumi(Ay)ixi
x\in\{-1,1\}m
\|Ay\|1
y\in\{-1,1\}n
\|A\|infty
\{x\inRm:\|x\|infty=1\}
\begin{align}max& \sumi,Aij\langlex(i),y(j)\rangle\ s.t.& x(1),\ldots,x(m),y(1),\ldots,y(n)areunitvectorsin(Rd,\| ⋅ \|2)\end{align}
It is known that exactly computing
\|A\|p
1\leqq<p\leqinfty
\|A\|p
p\not\in\{1,2,infty\}
One can then ask the following natural question: How well does an optimal solution to the semidefinite program approximate
\|A\|infty
C>0
m,n\geq1
m x n
A
H
max | |
x(i),y(i)\inHunitvectors |
\sumi,Aij\left\langlex(i),y(j)\right\rangleH\leqC\|A\|infty.
The sequences
R | |
K | |
G |
(d)
C | |
K | |
G |
(d)
Grothendieck proved that
1.57 ≈
\pi | |
2 |
\leq
R | |
K | |
G |
\leq\operatorname{sinh}
\pi | |
2 |
≈ 2.3,
R | |
K | |
G |
\supd
R | |
K | |
G |
(d)
[5] improved the result by proving that
R | |
K | |
G |
\le
\pi | |
2ln(1+\sqrt{2 |
)} ≈ 1.7822
Boris Tsirelson showed that the Grothendieck constants
R | |
K | |
G |
(d)
R | |
K | |
G |
(2d2)
Some historical data on best known lower bounds of
R | |
K | |
G |
(d)
d | Grothendieck, 1953 | Krivine, 1979 | Davie, 1984[9] | Fishburn et al., 1994[10] | Vértesi, 2008[11] | Briët et al., 2011[12] | Hua et al., 2015[13] | Diviánszky et al., 2017[14] | Designolle et al., 2023 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | \sqrt{2} | |||||||||||
3 | 1.41724 | 1.41758 | 1.4359 | 1.4367 | ||||||||
4 | 1.44521 | 1.44566 | 1.4841 | |||||||||
5 |
| 1.46007 | 1.46112 | |||||||||
6 | 1.47017 | |||||||||||
7 | 1.46286 | 1.47583 | ||||||||||
8 | 1.47586 | 1.47972 | ||||||||||
9 | 1.48608 | |||||||||||
∞ |
| 1.67696 |
Some historical data on best known upper bounds of
R | |
K | |
G |
(d)
d | Grothendieck, 1953 | Rietz, 1974[15] | Krivine, 1979 | Braverman et al., 2011 | Hirsch et al., 2016[16] | Designolle et al., 2023 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | \sqrt{2} | ||||||||||||||
3 | 1.5163 | 1.4644 | 1.4546 | ||||||||||||
4 |
| ||||||||||||||
8 | 1.6641 | ||||||||||||||
∞ | \operatorname{sinh}
| 2.261 |
)} |
)}-\varepsilon |
Given an
m x n
A=(aij)
A
\|A\|\square=maxS\left|\sumiaij\right|.
The notion of cut norm is essential in designing efficient approximation algorithms for dense graphs and matrices. More generally, the definition of cut norm can be generalized for symmetric measurable functions
W:[0,1]2\toR
W
\|W\|\square=\supS,\left|\intSW\right|.
This generalized definition of cut norm is crucial in the study of the space of graphons, and the two definitions of cut norm can be linked via the adjacency matrix of a graph.
An application of the Grothendieck inequality is to give an efficient algorithm for approximating the cut norm of a given real matrix
A
m x n
\alpha
\|A\|\square\leq\alpha\leqC\|A\|\square,
where
C
We give a sketch of this approximation algorithm. Let
B=(bij)
(m+1) x (n+1)
\begin{pmatrix}a11&a12&\ldots&a1n&
n | |
-\sum | |
k=1 |
a1k\ a21&a22&\ldots&a2n&
n | |
-\sum | |
k=1 |
a2k\ \vdots&\vdots&\ddots&\vdots&\vdots\ am1&am2&\ldots&amn&
n | |
-\sum | |
k=1 |
amk
m | |
\ -\sum | |
\ell=1 |
a\ell&
m | |
-\sum | |
\ell=1 |
a\ell&\ldots&
m | |
-\sum | |
\ell=1 |
a\ell&
n | |
\sum | |
k=1 |
m | |
\sum | |
\ell=1 |
a\ell\end{pmatrix}.
One can verify that
\|A\|\square=\|B\|\square
S\in[m+1],T\in[n+1]
B
S*=\begin{cases}S,&ifm+1\not\inS,\ {[m]}\setminusS,&otherwise,\end{cases} T*=\begin{cases}T,&ifn+1\not\inT,\ {[n]}\setminusS,&otherwise,\end{cases}
form a maximizer for the cut norm of
A
\|B\|\square=\|B\|infty/4
\|B\|infty=max\left\{
m+1 | |
\sum | |
i=1 |
n+1 | |
\sum | |
j=1 |
bij\varepsiloni\deltaj:\varepsilon1,\ldots,\varepsilonm\in\{-1,1\},\delta1,\ldots,\deltan\in\{-1,1\}\right\}.
Although not important in this proof,
\|B\|infty
B
m | |
\ell | |
infty |
m | |
\ell | |
1 |
Now it suffices to design an efficient algorithm for approximating
\|A\|infty
SDP(A)=max\left\{
m | |
\sum | |
i=1 |
n | |
\sum | |
j=1 |
aij\left\langlexi,yj\right\rangle:x1,\ldots,xm,y1,\ldots,yn\inSn\right\}.
Then
SDP(A)\geq\|A\|infty
SDP(A)\leq
R | |
K | |
G |
\|A\|infty
\varepsilon
log(1/\varepsilon)
\alpha=SDP(B)
\|A\|\square\leq\alpha\leqC\|A\|\square with C=
R | |
K | |
G |
.
Szemerédi's regularity lemma is a useful tool in graph theory, asserting (informally) that any graph can be partitioned into a controlled number of pieces that interact with each other in a pseudorandom way. Another application of the Grothendieck inequality is to produce a partition of the vertex set that satisfies the conclusion of Szemerédi's regularity lemma, via the cut norm estimation algorithm, in time that is polynomial in the upper bound of Szemerédi's regular partition size but independent of the number of vertices in the graph.[19]
It turns out that the main "bottleneck" of constructing a Szemeredi's regular partition in polynomial time is to determine in polynomial time whether or not a given pair
(X,Y)
\varepsilon
S\subsetX,T\subsetY
|S|\geq\varepsilon|X|,|T|\geq\varepsilon|Y|
\left|
e(S,T) | |
|S||T| |
-
e(X,Y) | |
|X||Y| |
\right|\leq\varepsilon,
where
e(X',Y')=|\{(u,v)\inX' x Y':uv\inE\}|
X',Y'\subsetV
V,E
n x n
A=(axy)(x,
n=|V|
axy=\begin{cases}1-
e(X,Y) | |
|X||Y| |
,&ifxy\inE,\ -
e(X,Y) | |
|X||Y| |
,&otherwise.\end{cases}
Then for all
S\subsetX,T\subsetY
\left|\sumxaxy\right|=|S||T|\left|
e(S,T) | |
|S||T| |
-
e(X,Y) | |
|X||Y| |
\right|.
Hence, if
(X,Y)
\varepsilon
\|A\|\square\geq\varepsilon3n2
S\subsetX,T\subsetY
min\left\{n|S|,n|T|,n2\left|
e(S,T) | |
|S||T| |
-
e(X,Y) | |
|X||Y| |
\right|\right\}\geq\left|\sumxaxy\right|\geq
1 | ||||||
|
\varepsilon3n2\geq
1 | |
2 |
\varepsilon3n2.
Then the algorithm for producing a Szemerédi's regular partition follows from the constructive argument of Alon et al.[20]
The Grothendieck inequality of a graph states that for each
n\inN
G=(\{1,\ldots,n\},E)
K>0
n x n
A=(aij)
max | |
x1,\ldots,xn\inSn |
\sumijaij\left\langlexi,xj\right\rangle\leqK
max | |
\varepsilon1,\ldots,\varepsilonn\in\{-1,1\ |
The Grothendieck constant of a graph
G
K(G)
K
The Grothendieck inequality of a graph is an extension of the Grothendieck inequality because the former inequality is the special case of the latter inequality when
G
\{1,\ldots,n\}
KG=\supn\{K(G):Gisann-vertexbipartitegraph\}.
For
G=Kn
n
G
max | |
x1,\ldots,xn\inSn |
\sumi,,i ≠ j}aij\left\langlexi,xj\right\rangle\leqK(Kn)
max | |
\varepsilon1,\ldots,\varepsilonn\in\{-1,1\ |
It turns out that
K(Kn)\asymplogn
K(Kn)\lesssimlogn
n x n
A=(aij)
K(Kn)\lesssimlogn
max | |
x1,\ldots,xn\inSn |
\sumi,,i ≠ j}aij\left\langlexi,xj\right\rangle\leqlog\left(
\sumi | |
\sum |
j\setminus\{i\}}|aij|}{\sqrt{\sumi
On the other hand, the matching lower bound
K(Kn)\gtrsimlogn
The Grothendieck inequality
K(G)
G
G
log\omega\lesssimK(G)\lesssimlog\vartheta,
and
K(G)\leq
\pi | |||
|
{\vartheta-1}\right)},
where
\omega
G
k\in\{2,\ldots,n\}
S\subset\{1,\ldots,n\}
|S|=k
ij\inE
i,j\inS
\vartheta=min\left\{maxi
The parameter
\vartheta
G
In the application of the Grothendieck inequality for approximating the cut norm, we have seen that the Grothendieck inequality answers the following question: How well does an optimal solution to the semidefinite program
SDP(A)
\|A\|infty
For instance, the following inequality is due to Naor and Schechtman[28] and independently due to Guruswami et al:[29] For every
n x n
A=(aij)
p\geq2
max | |||||||||||||||||||
|
n | |
\sum | |
i=1 |
n | |
\sum | |
j=1 |
aij\left\langlexi,xj\right\rangle\leq
2 | |
\gamma | |
p |
max | |||||||||||||
|
n | |
\sum | |
i=1 |
n | |
\sum | |
j=1 |
aijtitj,
where
\gammap=\sqrt{2}\left(
\Gamma((p+1)/2) | |
\sqrt{\pi |
The constant
2 | |
\gamma | |
p |
2 | |
\gamma | |
p |
=p/e+O(1)
p\toinfty