Discrete Chebyshev polynomials explained
Discrete Chebyshev polynomials should not be confused with Chebyshev polynomials.
In mathematics, discrete Chebyshev polynomials, or Gram polynomials, are a type of discrete orthogonal polynomials used in approximation theory, introduced by Pafnuty Chebyshev and rediscovered by Gram. They were later found to be applicable to various algebraic properties of spin angular momentum.
Elementary Definition
The discrete Chebyshev polynomial
is a polynomial of degree
n in
x, for
, constructed such that two polynomials of unequal degree are orthogonal with respect to the weight function
with
being the Dirac delta function. That is,
The integral on the left is actually a sum because of the delta function, and we have,
Thus, even though
is a polynomial in
, only its values at a discrete set of points,
are of any significance. Nevertheless, because these polynomials can be defined in terms of orthogonality with respect to a nonnegative weight function, the entire theory of orthogonal polynomials is applicable. In particular, the polynomials are complete in the sense that
Chebyshev chose the normalization so that
This fixes the polynomials completely along with the sign convention,
.
If the independent variable is linearly scaled and shifted so that the end points assume the values
and
, then as
,
times a constant, where
is the Legendre polynomial.
Advanced Definition
Let be a smooth function defined on the closed interval [−1, 1], whose values are known explicitly only at points, where k and m are integers and . The task is to approximate f as a polynomial of degree n < m. Consider a positive semi-definite bilinear formwhere and are continuous on [−1, 1] and letbe a discrete semi-norm. Let
be a
family of polynomials orthogonal to each other
whenever is not equal to . Assume all the polynomials
have a positive leading coefficient and they are
normalized in such a way that
The
are called discrete Chebyshev (or Gram) polynomials.
[1] Connection with Spin Algebra
The discrete Chebyshev polynomials have surprising connections to various algebraic properties of spin: spin transition probabilities,[2] the probabilities for observations of the spin in Bohm's spin-s version of the Einstein-Podolsky-Rosen experiment,[3] and Wigner functions for various spin states.[4]
Specifically, the polynomials turn out to be the eigenvectors of the absolute square of the rotation matrix (the Wigner D-matrix). The associated eigenvalue is the Legendre polynomial
, where
is the rotation angle. In other words, if
where
are the usual angular momentum or spin eigenstates,and
then
The eigenvectors
are scaled and shifted versions of the Chebyshev polynomials. They are shifted so as to have support on the points
instead of
for
with
corresponding to
, and
corresponding to
. In addition, the
can be scaled so as to obey other normalization conditions. For example, one could demand that they satisfy
along with
.
References
- R.W. Barnard . G. Dahlquist . K. Pearce . L. Reichel . K.C. Richards. Gram Polynomials and the Kummer Function. Journal of Approximation Theory. 1998. 94. 128 - 143. 10.1006/jath.1998.3181. free.
- A. Meckler. Majorana formula. Physical Review. 1958. 111. 6. 1447. 10.1103/PhysRev.111.1447. 1958PhRv..111.1447M.
- N. D. Mermin . G. M. Schwarz. Joint distributions and local realism in the higher-spin Einstein-Podolsky-Rosen experiment. Foundations of Physics. 1982. 12. 2. 101. 10.1007/BF00736844. 1982FoPh...12..101M. 121648820.
- Anupam Garg. The discrete Chebyshev–Meckler–Mermin–Schwarz polynomials and spin algebra. Journal of Mathematical Physics. 2022. 63. 7. 072101. 10.1063/5.0094575. 2022JMP....63g2101G.