In mathematical physics, the Gordon decomposition[1] (named after Walter Gordon) of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.
For any solution
\psi
(i\gamma\mu\nabla\mu-m)\psi=0,
j\mu=\bar\psi\gamma\mu\psi
\bar\psi\gamma\mu\psi=
i | |
2m |
(\bar\psi\nabla\mu\psi-(\nabla\mu\bar\psi)\psi)+
1 | |
m |
\partial\nu(\bar\psi\Sigma\mu\nu\psi),
\Sigma\mu\nu=
i | |
4 |
[\gamma\mu,\gamma\nu]
\bar\psi=\psi\dagger\gamma0
The corresponding momentum-space version for plane wave solutions
u(p)
\baru(p')
(\gamma\mup\mu-m)u(p)=0
\baru(p')(\gamma\mup'\mu-m)=0,
\baru(p')\gamma\muu(p)=\baru(p')\left[
(p+p')\mu | |
2m |
+i\sigma\mu\nu
(p'-p)\nu | |
2m |
\right]u(p)~,
\sigma\mu\nu=2\Sigma\mu\nu.
One sees that from Dirac's equation that
\bar\psi\gamma\mu(m\psi)=\bar\psi\gamma\mu(i\gamma\nu\nabla\nu\psi)
(\bar\psim)\gamma\mu\psi=((\nabla\nu\bar\psi)(-i\gamma\nu))\gamma\mu\psi.
\bar\psi\gamma\mu\psi=
i | |
2m |
(\bar\psi\gamma\mu\gamma\nu\nabla\nu\psi-(\nabla\nu\bar\psi)\gamma\nu\gamma\mu\psi).
\gamma\mu\gamma\nu=η\mu\nu-i\sigma\mu\nu=η\nu\mu+i\sigma\nu\mu.
\bar\psi\gamma\mu\psi=
i | |
2m |
(\bar\psi(η\mu\nu-i\sigma\mu\nu)\nabla\nu\psi
\mu\nu | |
-(\nabla | |
\nu\bar\psi)(η |
+i\sigma\mu\nu)\psi),
The second, spin-dependent, part of the current coupled to the photon field,
-A\muj\mu
- | e\hbar |
2mc |
\partial\nuA\mu\bar{\psi}\sigma\nu\mu\psi=-
e\hbar | |
2mc |
\tfrac{1}{2}F\mu\nu\bar{\psi}\sigma\mu\nu\psi,
-(e\hbar/2mc)\vec{B} ⋅ \psi\dagger\vec\sigma\psi
This decomposition of the current into a particle number-flux (first term) and bound spin contribution (second term) requires
m\ne0
If one assumed that the given solution has energy
^2+m^2 |
Using the Dirac equation again, one finds that
{j}\equive\bar\psi{\boldsymbol\gamma}\psi=
e | |
2iE |
\left(\psi\dagger\nabla\psi-(\nabla\psi\dagger)\psi\right)+
e | |
E |
(\nabla x {S}).
{\boldsymbol\gamma}=(\gamma1,\gamma2,\gamma3)
{S}=\psi\dagger\hat{S}\psi
(\hatSx,\hatSy,\hatSz)=(\Sigma23,\Sigma31,\Sigma12),
\hat
{
|
\ 0&{\boldsymbol\sigma}\end{matrix}\right],
{\boldsymbol\sigma}=(\sigmax,\sigmay,\sigmaz)
With the particle-number density identified with
\rho=\psi\dagger\psi
{j}\rm=e\rho{k}/E=e\rho{v}
{v}={k}/E
The second term,
{j}\rm=(e/E)\nabla x {S}
{\boldsymbol\mu}\stackrel{\rm}{=}
1 | |
2 |
\int{r} x {j}\rmd3x=
1 | |
2 |
\int{r} x \left(
e | |
E\nabla |
x {S}\right)d3x=
e | |
E |
\int{S}d3x~.
For a single massive particle in its rest frame, where
E=m
{\boldsymbol\mu}\rm=\left(
e | \right){S}=\left( | |
m |
eg | |
2m |
\right){S}.
|{S}|=\hbar/2
g=2
For a single massless particle obeying the right-handed Weyl equation, the spin-1/2 is locked to the direction
\hat{k}
{\boldsymbol\mu}\rm=\left(
e | |
E |
\right)
\hbar\hat{k | |
\mu\nu | |
T | |
\rmBR |
=
i | |
4 |
(\bar\psi\gamma\mu\nabla\nu\psi-(\nabla\nu\bar\psi)\gamma\mu\psi+\bar\psi\gamma\nu\nabla\mu\psi-(\nabla\mu\bar\psi)\gamma\nu\psi).
0\mu | |
T | |
\rmBR |
=({lE},{P})
{lE}=E\psi\dagger\psi
{P}= | 1{2i}\left |
(\psi |
\dagger(\nabla\psi)-(\nabla\psi\dagger)\psi\right)+
12 | |
\nabla x |
{S}.
\mu\nu | |
T | |
\rmcanonical |
=
i | |
2 |
(\bar\psi\gamma\mu\nabla\nu\psi-(\nabla\nu\bar\psi)\gamma\mu\psi),
\int
3x | ||||
{
|
=\int{S}d3x.
g=2
Motivated by the Riemann–Silberstein vector form of Maxwell's equations, Michael Berry[4] uses the Gordon strategy to obtain gauge-invariant expressions for the intrinsic spin angular-momentum density for solutions to Maxwell's equations.
He assumes that the solutions are monochromatic and uses the phasor expressions
E=E(r)e-i\omega
H=H(r)e-i\omega
{H}* ⋅ (\nabla{H})
\nabla
As and for a fluid with intrinsic angular momentum density
S
{E}=i\sigmac{B}
\sigma
\pm1