Gordan's lemma explained
Gordan's lemma is a lemma in convex geometry and algebraic geometry. It can be stated in several ways.
be a matrix of integers. Let
be the set of non-negative integer solutions of
. Then there exists a finite subset of vectors in
, such that every element of
is a linear combination of these vectors with non-negative integer coefficients.
[1]
The lemma is named after the mathematician Paul Gordan (1837–1912). Some authors have misspelled it as "Gordon's lemma".
Proofs
There are topological and algebraic proofs.
Topological proof
Let
be the
dual cone of the given rational polyhedral cone. Let
be integral vectors so that
\sigma=\{x\mid\langleui,x\rangle\ge0,1\lei\ler\}.
Then the
's generate the dual cone
; indeed, writing
C for the cone generated by
's, we have:
, which must be the equality. Now, if
x is in the semigroup
S\sigma=\sigma\vee\capZd,
then it can be written as
where
are nonnegative integers and
. But since
x and the first sum on the right-hand side are integral, the second sum is a lattice point in a bounded region, and so there are only finitely many possibilities for the second sum (the topological reason). Hence,
is finitely generated.
Algebraic proof
The proof[3] is based on a fact that a semigroup S is finitely generated if and only if its semigroup algebra
is a finitely generated algebra over
. To prove Gordan's lemma, by induction (cf. the proof above), it is enough to prove the following statement: for any unital subsemigroup
S of
,
If S is finitely generated, then
S+=S\cap\{x\mid\langlex,v\rangle\ge0\}
,
v an integral vector, is finitely generated.Put
, which has a basis
. It has
-grading given by
An=\operatorname{span}\{\chia\mida\inS,\langlea,v\rangle=n\}
.By assumption,
A is finitely generated and thus is Noetherian. It follows from the algebraic lemma below that
is a finitely generated algebra over
. Now, the semigroup
S0=S\cap\{x\mid\langlex,v\rangle=0\}
is the image of
S under a linear projection, thus finitely generated and so
is finitely generated. Hence,
is finitely generated then.
Lemma: Let A be a
-graded ring. If
A is a Noetherian ring, then
is a finitely generated
-algebra.
Proof: Let I be the ideal of A generated by all homogeneous elements of A of positive degree. Since A is Noetherian, I is actually generated by finitely many
, homogeneous of positive degree. If
f is homogeneous of positive degree, then we can write
with
homogeneous. If
f has sufficiently large degree, then each
has degree positive and strictly less than that of
f. Also, each degree piece
is a finitely generated
-module. (Proof: Let
be an increasing chain of finitely generated submodules of
with union
. Then the chain of the ideals
stabilizes in finite steps; so does the chain
) Thus, by induction on degree, we see
is a finitely generated
-algebra.
Applications
A multi-hypergraph over a certain set
is a
multiset of subsets of
(it is called "multi-hypergraph" since each hyperedge may appear more than once). A multi-hypergraph is called
regular if all vertices have the same
degree. It is called
decomposable if it has a proper nonempty subset that is regular too. For any integer
n, let
be the maximum degree of an indecomposable multi-hypergraph on
n vertices. Gordan's lemma implies that
is finite.
Proof: for each subset
S of vertices, define a variable
xS (a non-negative integer). Define another variable
d (a non-negative integer). Consider the following set of
n equations (one equation per vertex):
Every solution (
x,
d) denotes a regular multi-hypergraphs on
, where
x defines the hyperedges and
d is the degree. By Gordan's lemma, the set of solutions is generated by a finite set of solutions, i.e., there is a finite set
of multi-hypergraphs, such that each regular multi-hypergraph is a linear combination of some elements of
. Every non-decomposable multi-hypergraph must be in
(since by definition, it cannot be generated by other multi-hypergraph). Hence, the set of non-decomposable multi-hypergraphs is finite.
See also
- Birkhoff algorithm is an algorithm that, given a bistochastic matrix (a matrix which solves a particular set of equations), finds a decomposition of it into integral matrices. It is related to Gordan's lemma in that it shows that the set of these matrices is generated by a finite set of integral matrices.
See also
Notes and References
- Alon . N . Berman . K.A . 1986-09-01 . Regular hypergraphs, Gordon's lemma, Steinitz' lemma and invariant theory . Journal of Combinatorial Theory, Series A . 43 . 1 . 91–97 . 10.1016/0097-3165(86)90026-9 . 0097-3165 . free.
- David A. Cox, Lectures on toric varieties. Lecture 1. Proposition 1.11.
- Book: Bruns . Winfried . Gubeladze . Joseph . 2009 . Polytopes, rings, and K-theory . Springer Monographs in Mathematics . Springer . 10.1007/b105283. 978-0-387-76355-2 ., Lemma 4.12.