Goodwin–Staton integral explained
In mathematics the Goodwin–Staton integral is defined as :[1]
It satisfies the following third-order nonlinear differential equation:
4w(z)+8z
w(z)+(2+2z2)
w(z)+z
w\left(z\right)=0
Properties
Symmetry:
Expansion for small z:
\begin{align}
G(z)={}&1-\gamma-ln(z2)-i\operatorname{csgn}(iz2)\pi+
z\\[5pt]
& {}+(-2+\gamma+ln(z2)+i\operatorname{csgn}(iz2)\pi)z2-
z3\\[5pt]
& {}+\left(
-
\gamma-
ln(z2)-
i\operatorname{csgn}(iz2)\pi\right)z4+O(z5)
\end{align}
References
- [Frank William John Olver]
- http://journals.cambridge.org/article_S0013091504001087
- 10.1016/j.jqsrt.2006.09.018 . 105 . Evaluation of the generalized Goodwin–Staton integral using binomial expansion theorem . Journal of Quantitative Spectroscopy and Radiative Transfer . 8–11. 2007 . Mamedov . B.A. .
- http://dlmf.nist.gov/7.2
- https://web.archive.org/web/20150225035306/http://discovery.dundee.ac.uk/portal/en/research/the-generalized-goodwinstaton-integral(3db9f429-7d7f-488c-a1d7-c8efffd01158).html
- https://web.archive.org/web/20150225105452/http://discovery.dundee.ac.uk/portal/en/research/the-generalized-goodwinstaton-integral(3db9f429-7d7f-488c-a1d7-c8efffd01158)/export.html
- http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_02.pdf
- F. W. J. Olver, Werner Rheinbolt, Academic Press, 2014, Mathematics,Asymptotics and Special Functions, 588 pages, gbook