Goodwin–Staton integral explained

In mathematics the Goodwin–Staton integral is defined as :[1]

infty
G(z)=\int
0
-t2
e
t+z

dt

It satisfies the following third-order nonlinear differential equation:

4w(z)+8z

d
dz

w(z)+(2+2z2)

d2
dz2

w(z)+z

d3
dz3

w\left(z\right)=0

Properties

Symmetry:

G(-z)=-G(z)

Expansion for small z:

\begin{align} G(z)={}&1-\gamma-ln(z2)-i\operatorname{csgn}(iz2)\pi+

2i
\sqrt\pi

z\\[5pt] &    {}+(-2+\gamma+ln(z2)+i\operatorname{csgn}(iz2)\pi)z2-

4i
3\sqrt\pi

z3\\[5pt] &    {}+\left(

5
4

-

1
2

\gamma-

1
2

ln(z2)-

1
2

i\operatorname{csgn}(iz2)\pi\right)z4+O(z5) \end{align}

References

  1. [Frank William John Olver]