Goldstine theorem explained

In functional analysis, a branch of mathematics, the Goldstine theorem, named after Herman Goldstine, is stated as follows:

Goldstine theorem. Let

X

be a Banach space, then the image of the closed unit ball

B\subseteqX

under the canonical embedding into the closed unit ball

B\prime\prime

of the bidual space

X\prime\prime

is a weak*-dense subset.

c0,

and its bi-dual space Lp space

\ellinfty.

Proof

Lemma

For all

x\prime\prime\inB\prime\prime,

\varphi1,\ldots,\varphin\inX\prime

and

\delta>0,

there exists an

x\in(1+\delta)B

such that

\varphii(x)=x\prime\prime(\varphii)

for all

1\leqi\leqn.

Proof of lemma

By the surjectivity of\begin\Phi : X \to \Complex^, \\ x \mapsto \left(\varphi_1(x), \cdots, \varphi_n(x) \right)\endit is possible to find

x\inX

with

\varphii(x)=x\prime\prime(\varphii)

for

1\leqi\leqn.

Now letY := \bigcap_i \ker \varphi_i = \ker \Phi.

Every element of

z\in(x+Y)\cap(1+\delta)B

satisfies

z\in(1+\delta)B

and

\varphii(z)=\varphii(x)=x\prime\prime(\varphii),

so it suffices to show that the intersection is nonempty.

Assume for contradiction that it is empty. Then

\operatorname{dist}(x,Y)\geq1+\delta

and by the Hahn–Banach theorem there exists a linear form

\varphi\inX\prime

such that

\varphi\vertY=0,\varphi(x)\geq1+\delta

and
\|\varphi\|
X\prime

=1.

Then

\varphi\in\operatorname{span}\left\{\varphi1,\ldots,\varphin\right\}

[1] and therefore1+\delta \leq \varphi(x) = x^(\varphi) \leq \|\varphi\|_ \left\|x^\right\|_ \leq 1,which is a contradiction.

Proof of theorem

Fix

x\prime\prime\inB\prime\prime,

\varphi1,\ldots,\varphin\inX\prime

and

\epsilon>0.

Examine the setU := \left\.

Let

J:XX\prime\prime

be the embedding defined by

J(x)=Evx,

where

Evx(\varphi)=\varphi(x)

is the evaluation at

x

map. Sets of the form

U

form a base for the weak* topology,[2] so density follows once it is shown

J(B)\capU\varnothing

for all such

U.

The lemma above says that for any

\delta>0

there exists a

x\in(1+\delta)B

such that

x\prime\prime(\varphii)=\varphii(x),

1\leqi\leqn,

and in particular

Evx\inU.

Since

J(B)\subsetB\prime\prime,

we have

Evx\in(1+\delta)J(B)\capU.

We can scale to get
1
1+\delta

Evx\inJ(B).

The goal is to show that for a sufficiently small

\delta>0,

we have
1
1+\delta

Evx\inJ(B)\capU.

Directly checking, one has\left|\left[x^{\prime\prime} - \frac{1}{1+\delta} \text{Ev}_x\right](\varphi_i)\right| = \left|\varphi_i(x) - \frac\varphi_i(x)\right| = \frac |\varphi_i(x)|.

Note that one can choose

M

sufficiently large so that

\|\varphii\|

X\prime

\leqM

for

1\leqi\leqn.

[3] Note as well that

\|x\|X\leq(1+\delta).

If one chooses

\delta

so that

\deltaM<\epsilon,

then\frac \left|\varphi_i(x)\right| \leq \frac \|\varphi_i\|_ \|x\|_ \leq \delta \|\varphi_i\|_ \leq \delta M < \epsilon.

Hence one gets

1
1+\delta

Evx\inJ(B)\capU

as desired.

Notes and References

  1. Book: Rudin. Walter . Functional Analysis. Lemma 3.9. 63–64. Second.
  2. Book: Rudin. Walter. Functional Analysis. Equation (3) and the remark after. 69. Second.
  3. Book: Folland. Gerald. Real Analysis: Modern Techniques and Their Applications. Proposition 5.2. 153–154. Second.