In functional analysis, a branch of mathematics, the Goldstine theorem, named after Herman Goldstine, is stated as follows:
Goldstine theorem. Let
X
B\subseteqX
B\prime\prime
X\prime\prime
c0,
\ellinfty.
For all
x\prime\prime\inB\prime\prime,
\varphi1,\ldots,\varphin\inX\prime
\delta>0,
x\in(1+\delta)B
\varphii(x)=x\prime\prime(\varphii)
1\leqi\leqn.
By the surjectivity ofit is possible to find
x\inX
\varphii(x)=x\prime\prime(\varphii)
1\leqi\leqn.
Now let
Every element of
z\in(x+Y)\cap(1+\delta)B
z\in(1+\delta)B
\varphii(z)=\varphii(x)=x\prime\prime(\varphii),
Assume for contradiction that it is empty. Then
\operatorname{dist}(x,Y)\geq1+\delta
\varphi\inX\prime
\varphi\vertY=0,\varphi(x)\geq1+\delta
\|\varphi\| | |
X\prime |
=1.
\varphi\in\operatorname{span}\left\{\varphi1,\ldots,\varphin\right\}
Fix
x\prime\prime\inB\prime\prime,
\varphi1,\ldots,\varphin\inX\prime
\epsilon>0.
Let
J:X → X\prime\prime
J(x)=Evx,
Evx(\varphi)=\varphi(x)
x
U
J(B)\capU ≠ \varnothing
U.
\delta>0
x\in(1+\delta)B
x\prime\prime(\varphii)=\varphii(x),
1\leqi\leqn,
Evx\inU.
J(B)\subsetB\prime\prime,
Evx\in(1+\delta)J(B)\capU.
1 | |
1+\delta |
Evx\inJ(B).
\delta>0,
1 | |
1+\delta |
Evx\inJ(B)\capU.
Directly checking, one has
Note that one can choose
M
\|\varphii\|
X\prime |
\leqM
1\leqi\leqn.
\|x\|X\leq(1+\delta).
\delta
\deltaM<\epsilon,
Hence one gets
1 | |
1+\delta |
Evx\inJ(B)\capU