This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.
Notations:
( ⋅ , ⋅ )
\langle ⋅ , ⋅ \rangle
\langle\beta,\alpha\rangle=
(\beta,\alpha) | |
(\alpha,\alpha) |
\forall\alpha,\beta\inE.
Classical Lie algebras:
Special linear algebra | Al (l\ge1) | l2+2l | ak{sl}(l+1,F)=\{x\inak{gl}(l+1,F)|Tr(x)=0\} | |
Orthogonal algebra | Bl (l\ge1) | 2l2+l | ak{o}(2l+1,F)=\{x\inak{gl}(2l+1,F)|sx=-xts,s=\begin{pmatrix}1&0&0\ 0&0&Il\ 0&Il&0\end{pmatrix}\} | |
Symplectic algebra | Cl (l\ge2) | 2l2-l | ak{sp}(2l,F)=\{x\inak{gl}(2l,F)|sx=-xts,s=\begin{pmatrix}0&Il\ -Il&0\end{pmatrix}\} | |
Orthogonal algebra | Dl(l\ge1) | 2l2+l | ak{o}(2l,F)=\{x\inak{gl}(2l,F)|sx=-xts,s=\begin{pmatrix}0&Il\ Il&0\end{pmatrix}\} |
Exceptional Lie algebras:
Root System | dimension | |
---|---|---|
G2 | 14 | |
F4 | 52 | |
E6 | 78 | |
E7 | 133 | |
E8 | 248 |
. Victor Kac. Infinite dimensional Lie algebras. 3rd . . 1990. 0-521-46693-8.