Glossary of Lie groups and Lie algebras explained

This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.

Notations:

(,)

denotes the inner product of a Euclidean space E and

\langle,\rangle

denotes the rescaled inner product

\langle\beta,\alpha\rangle=

(\beta,\alpha)
(\alpha,\alpha)

\forall\alpha,\beta\inE.

S

Classical Lie algebras:

Special linear algebra

Al(l\ge1)

l2+2l

ak{sl}(l+1,F)=\{x\inak{gl}(l+1,F)|Tr(x)=0\}

(traceless matrices)
Orthogonal algebra

Bl(l\ge1)

2l2+l

ak{o}(2l+1,F)=\{x\inak{gl}(2l+1,F)|sx=-xts,s=\begin{pmatrix}1&0&0\ 0&0&Il\ 0&Il&0\end{pmatrix}\}

Symplectic algebra

Cl(l\ge2)

2l2-l

ak{sp}(2l,F)=\{x\inak{gl}(2l,F)|sx=-xts,s=\begin{pmatrix}0&Il\-Il&0\end{pmatrix}\}

Orthogonal algebra

Dl(l\ge1)

2l2+l

ak{o}(2l,F)=\{x\inak{gl}(2l,F)|sx=-xts,s=\begin{pmatrix}0&Il\Il&0\end{pmatrix}\}

Exceptional Lie algebras:

Root Systemdimension
G214
F452
E678
E7133
E8248

U

V

References

. Victor Kac. Infinite dimensional Lie algebras. 3rd . . 1990. 0-521-46693-8.