Generalized relative entropy (
\epsilon
In the study of quantum information theory, we typically assume that information processing tasks are repeated multiple times, independently. The corresponding information-theoretic notions are therefore defined in the asymptotic limit. The quintessential entropy measure, von Neumann entropy, is one such notion. In contrast, the study of one-shot quantum information theory is concerned with information processing when a task is conducted only once. New entropic measures emerge in this scenario, as traditional notions cease to give a precise characterization of resource requirements.
\epsilon
In the asymptotic scenario, relative entropy acts as a parent quantity for other measures besides being an important measure itself. Similarly,
\epsilon
To motivate the definition of the
\epsilon
D\epsilon(\rho||\sigma)
\rho
\sigma
Q
I-Q
\rho
\operatorname{Tr}(\rhoQ)
\operatorname{Tr}(\sigmaQ)
\epsilon
\sigma
\rho
\epsilon
For
\epsilon\in(0,1)
\epsilon
\rho
\sigma
D\epsilon(\rho||\sigma)=-log
1 | |
\epsilon |
min\{\langleQ,\sigma\rangle|0\leqQ\leqIand\langleQ,\rho\rangle\geq\epsilon\}~.
From the definition, it is clear that
D\epsilon(\rho||\sigma)\geq0
\rho=\sigma
Suppose the trace distance between two density operators
\rho
\sigma
||\rho-\sigma||1=\delta~.
For
0<\epsilon<1
a)
log
\epsilon | |
\epsilon-(1-\epsilon)\delta |
\leq D\epsilon(\rho||\sigma) \leq log
\epsilon | |
\epsilon-\delta |
~.
In particular, this implies the following analogue of the Pinsker inequality[1]
b)
1-\epsilon | |
\epsilon |
||\rho-\sigma||1 \leq D\epsilon(\rho||\sigma)~.
Furthermore, the proposition implies that for any
\epsilon\in(0,1)
D\epsilon(\rho||\sigma)=0
\rho=\sigma
Upper bound: Trace distance can be written as
||\rho-\sigma||1=max0\leq\operatorname{Tr}(Q(\rho-\sigma))~.
This maximum is achieved when
Q
\rho-\sigma
Q
\operatorname{Tr}(Q(\rho-\sigma))\leq\delta
\operatorname{Tr}(Q\rho)\geq\epsilon
\operatorname{Tr}(Q\sigma)~\geq~\operatorname{Tr}(Q\rho)-\delta~\geq~\epsilon-\delta~.
From the definition of the
\epsilon
-D\epsilon(\rho||\sigma) | |
2 |
\geq
\epsilon-\delta | |
\epsilon |
~.
Lower bound: Let
Q
\rho-\sigma
\barQ
I
Q
\barQ=(\epsilon-\mu)I+(1-\epsilon+\mu)Q
\mu=
(1-\epsilon)\operatorname{Tr | |
(Q\rho)}{1 |
-\operatorname{Tr}(Q\rho)}~.
This means
\mu=(1-\epsilon+\mu)\operatorname{Tr}(Q\rho)
\operatorname{Tr}(\barQ\rho)~=~(\epsilon-\mu)+(1-\epsilon+\mu)\operatorname{Tr}(Q\rho)~=~\epsilon~.
\operatorname{Tr}(\barQ\sigma)~=~\epsilon-\mu+(1-\epsilon+\mu)\operatorname{Tr}(Q\sigma)~.
\mu=(1-\epsilon+\mu)\operatorname{Tr}(Q\rho)
Q
\mu
\operatorname{Tr}(\barQ\sigma)~=~\epsilon-(1-\epsilon+\mu)\operatorname{Tr}(Q\rho)+(1-\epsilon+\mu)\operatorname{Tr}(Q\sigma)
~=~\epsilon-
(1-\epsilon)\delta | |
1-\operatorname{Tr |
(Q\rho)}~\leq~\epsilon-(1-\epsilon)\delta~.
Hence
D\epsilon(\rho||\sigma)\geqlog
\epsilon | |
\epsilon-(1-\epsilon)\delta |
~.
To derive this Pinsker-like inequality, observe that
log
\epsilon | |
\epsilon-(1-\epsilon)\delta |
~=~-log\left(1-
(1-\epsilon)\delta | |
\epsilon |
\right)~\geq~\delta
1-\epsilon | |
\epsilon |
~.
A fundamental property of von Neumann entropy is strong subadditivity. Let
S(\sigma)
\sigma
\rhoABC
l{H}A ⊗ l{H}B ⊗ l{H}C
S(\rhoABC)+S(\rhoB)\leqS(\rhoAB)+S(\rhoBC)
\rhoAB,\rhoBC,\rhoB
S(\rho||\sigma)-S(l{E}(\rho)||l{E}(\sigma))\geq0
l{E}
S(\omega||\tau)
\omega,\tau
It is readily seen that
\epsilon
D\epsilon(\rho||\sigma)\geqD\epsilon(l{E}(\rho)||l{E}(\sigma))
l{E}
(R,I-R)
l{E}(\rho)
l{E}(\sigma)
\langleR,l{E}(\rho)\rangle=\langlel{E}\dagger(R),\rho\rangle\geq\epsilon
(l{E}\dagger(R),I-l{E}\dagger(R))
\rho
\sigma
\langleR,l{E}(\sigma)\rangle=\langlel{E}\dagger(R),\sigma\rangle\geq\langleQ,\sigma\rangle
(Q,I-Q)
D\epsilon(\rho||\sigma)
By the quantum analogue of the Stein lemma,[5]
\limn → infty
1 | |
n |
D\epsilon(\rho ⊗ ||\sigma ⊗ )=\limn → infty
-1 | |
n |
logmin
1 | |
\epsilon |
\operatorname{Tr}(\sigma ⊗ Q)
=D(\rho||\sigma)-\limn → infty
1 | |
n |
\left(log
1 | |
\epsilon |
\right)
=D(\rho||\sigma)~,
0\leqQ\leq1
\operatorname{Tr}(Q\rho ⊗ )\geq\epsilon~.
Applying the data processing inequality to the states
\rho ⊗
\sigma ⊗
l{E} ⊗
D\epsilon(\rho ⊗ ||\sigma ⊗ )~\geq~D\epsilon(l{E}(\rho) ⊗ ||l{E}(\sigma) ⊗ )~.
n
n → infty