Balanced polygamma function explained

In mathematics, the generalized polygamma function or balanced negapolygamma function is a function introduced by Olivier Espinosa Aldunate and Victor Hugo Moll.[1]

It generalizes the polygamma function to negative and fractional order, but remains equal to it for integer positive orders.

Definition

The generalized polygamma function is defined as follows:

\psi(z,q)=\zeta'(z+1,q)+l(\psi(-z)+\gammar)\zeta(z+1,q)
\Gamma(-z)

or alternatively,

\psi(z,q)=e-

\partial
\partialz

\left(e\gamma

\zeta(z+1,q)
\Gamma(-z)

\right),

where is the polygamma function and, is the Hurwitz zeta function.

The function is balanced, in that it satisfies the conditions

f(0)=f(1)and

1
\int
0

f(x)dx=0

.

Relations

Several special functions can be expressed in terms of generalized polygamma function.

\begin{align} \psi(x)&=\psi(0,x)\\ \psi(n)(x)&=\psi(n,x)    n\inN\\ \Gamma(x)&=\exp\left(\psi(-1,x)+\tfrac12ln2\pi\right)\\ \zeta(z,q)&=

\Gamma(1-z)
ln2

\left(2-z\psi\left(z-1,

q+1
2

\right)+2-z\psi\left(z-1,

q
2

\right)-\psi(z-1,q)\right)\\ \zeta'(-1,x)&=\psi(-2,x)+

x2
2

-

x
2

+

1{12}
\\ B

n(q)&=-

\Gamma(n+1)
ln2

\left(2n-1\psi\left(-n,

q+1
2

\right)+2n-1\psi\left(-n,

q
2

\right)-\psi(-n,q)\right) \end{align}

where are the Bernoulli polynomials

K(z)=A\exp\left(\psi(-2,z)+

z2-z
2

\right)

where is the -function and is the Glaisher constant.

Special values

The balanced polygamma function can be expressed in a closed form at certain points (where is the Glaisher constant and is the Catalan constant):

\begin{align} \psi\left(-2,\tfrac14\right)&=\tfrac18ln2\pi+\tfrac98lnA+

G
4\pi

&&\\ \psi\left(-2,\tfrac12\right)&=\tfrac14ln\pi+\tfrac32lnA+\tfrac5{24}ln2&\\ \psi\left(-3,\tfrac12\right)&=\tfrac1{16}ln2\pi+\tfrac12lnA+

7\zeta(3)
32\pi2

\\ \psi(-2,1)&=\tfrac12ln2\pi&\\ \psi(-3,1)&=\tfrac14ln2\pi+lnA\\ \psi(-2,2)&=ln2\pi-1&\\ \psi(-3,2)&=ln2\pi+2lnA-\tfrac34\\\end{align}

References

  1. A Generalized polygamma function. Olivier. Espinosa. Victor Hugo. Moll . Victor Hugo Moll . Integral Transforms and Special Functions. 15. 2. Apr 2004. 101–115. 10.1080/10652460310001600573 .