The generalized normal distribution or generalized Gaussian distribution (GGD) is either of two families of parametric continuous probability distributions on the real line. Both families add a shape parameter to the normal distribution. To distinguish the two families, they are referred to below as "symmetric" and "asymmetric"; however, this is not a standard nomenclature.
The symmetric generalized normal distribution, also known as the exponential power distribution or the generalized error distribution, is a parametric family of symmetric distributions. It includes all normal and Laplace distributions, and as limiting cases it includes all continuous uniform distributions on bounded intervals of the real line.
This family includes the normal distribution when
style\beta=2
style\mu
style | \alpha2 |
2 |
style\beta=1
style\beta → infty
style(\mu-\alpha,\mu+\alpha)
This family allows for tails that are either heavier than normal (when
\beta<2
\beta>2
style\beta=2
style\beta=infty
style\beta=1
style\beta=2
\beta
Parameter estimation via maximum likelihood and the method of moments has been studied.[1] The estimates do not have a closed form and must be obtained numerically. Estimators that do not require numerical calculation have also been proposed.[2]
The generalized normal log-likelihood function has infinitely many continuous derivates (i.e. it belongs to the class C∞ of smooth functions) only if
style\beta
style\lfloor\beta\rfloor
\beta
style\beta\ge2
It is possible to fit the generalized normal distribution adopting an approximate maximum likelihood method.[3] [4] With
\mu
m1
style\beta
style\beta=style\beta0
\beta0=
m1 | |
\sqrt{m2 |
m1={1\overN}
N | |
\sum | |
i=1 |
|xi|,
m2
\betai+1=\betai-
g(\betai) | |
g'(\betai) |
,
where
g(\beta)=1+
\psi(1/\beta) | |
\beta |
-
| ||||||||||||||||
|
+
| ||||||||||||||||||
\beta |
,
\begin{align} g'(\beta)={}&-
\psi(1/\beta) | |
\beta2 |
-
\psi'(1/\beta) | |
\beta3 |
+
1 | |
\beta2 |
-
| ||||||||||||||||||||||
|
\\[6pt] &{}+
| ||||||||||||||||||||||
|
+
| ||||||||||||||||
|
\\[6pt] &{}-
| |||||||||||||||||
\beta2 |
, \end{align}
and where
\psi
\psi'
Given a value for
style\beta
\mu
min\mu=
N | |
\sum | |
i=1 |
\beta | |
|x | |
i-\mu| |
Finally
style\alpha
\alpha=\left(
\beta | |
N |
\beta\right) | |
\sum | |
i-\mu| |
1/\beta.
For
\beta\leq1
\mu
\mu
\beta
\alpha
The symmetric generalized normal distribution has been used in modeling when the concentration of values around the mean and the tail behavior are of particular interest.[6] [7] Other families of distributions can be used if the focus is on other deviations from normality. If the symmetry of the distribution is the main interest, the skew normal family or asymmetric version of the generalized normal family discussed below can be used. If the tail behavior is the main interest, the student t family can be used, which approximates the normal distribution as the degrees of freedom grows to infinity. The t distribution, unlike this generalized normal distribution, obtains heavier than normal tails without acquiring a cusp at the origin. It finds uses in plasma physics under the name of Langdon Distribution resulting from inverse bremsstrahlung.[8]
Let
X\beta
\beta
\alpha
X\beta
k | |
\operatorname{E}\left[X | |
\beta\right] |
= \begin{cases} 0&ifkisodd,\\ \alphak\Gamma\left(
k+1 | |
\beta |
\right)/\Gamma\left(
1 | |
\beta |
\right)&ifkiseven. \end{cases}
From the viewpoint of the Stable count distribution,
\beta
1 | |
2 |
1 | ||||
|
-z\beta | |
e |
= \begin{cases}
infty | |
\displaystyle\int | |
0 |
1 | |
\nu |
\left(
1 | |
2 |
e-|z|/\nu\right) ak{N}\beta(\nu)d\nu, &1\geq\beta>0;or\\
infty | |
\displaystyle\int | |
0 |
1 | |
s |
\left(
1 | |
\sqrt{2\pi |
where
ak{N}\beta(\nu)
V\beta(s)
The probability density function of the symmetric generalized normal distribution is a positive-definite function for
\beta\in(0,2]
The symmetric generalized Gaussian distribution is an infinitely divisible distribution if and only if
\beta\in(0,1]\cup\{2\}
The multivariate generalized normal distribution, i.e. the product of
n
\beta
\alpha
p(x)=g(\|x\|\beta)
Generalized normal distribution should not be confused with Skew normal distribution.
The asymmetric generalized normal distribution is a family of continuous probability distributions in which the shape parameter can be used to introduce asymmetry or skewness.[14] [15] When the shape parameter is zero, the normal distribution results. Positive values of the shape parameter yield left-skewed distributions bounded to the right, and negative values of the shape parameter yield right-skewed distributions bounded to the left. Only when the shape parameter is zero is the density function for this distribution positive over the whole real line: in this case the distribution is a normal distribution, otherwise the distributions are shifted and possibly reversed log-normal distributions.
Parameters can be estimated via maximum likelihood estimation or the method of moments. The parameter estimates do not have a closed form, so numerical calculations must be used to compute the estimates. Since the sample space (the set of real numbers where the density is non-zero) depends on the true value of the parameter, some standard results about the performance of parameter estimates will not automatically apply when working with this family.
The asymmetric generalized normal distribution can be used to model values that may be normally distributed, or that may be either right-skewed or left-skewed relative to the normal distribution. The skew normal distribution is another distribution that is useful for modeling deviations from normality due to skew. Other distributions used to model skewed data include the gamma, lognormal, and Weibull distributions, but these do not include the normal distributions as special cases.
Kullback-Leibler divergence (KLD) is a method using for compute the divergence or similarity between two probability density functions.[16]
Let
P(x)
Q(x)
\alpha1,\beta1,\mu1
\alpha2,\beta2,\mu2
\mu1=\mu2=0
KLDpdf(P(x)||Q(x))=-
1 | |
\beta1 |
+
| ||||||||||||
|
+log\left(
| ||||||||||
|
\right)
The two generalized normal families described here, like the skew normal family, are parametric families that extends the normal distribution by adding a shape parameter. Due to the central role of the normal distribution in probability and statistics, many distributions can be characterized in terms of their relationship to the normal distribution. For example, the log-normal, folded normal, and inverse normal distributions are defined as transformations of a normally-distributed value, but unlike the generalized normal and skew-normal families, these do not include the normal distributions as special cases.
Actually all distributions with finite variance are in the limit highly related to the normal distribution. The Student-t distribution, the Irwin–Hall distribution and the Bates distribution also extend the normal distribution, and include in the limit the normal distribution. So there is no strong reason to prefer the "generalized" normal distribution of type 1, e.g. over a combination of Student-t and a normalized extended Irwin–Hall – this would include e.g. the triangular distribution (which cannot be modeled by the generalized Gaussian type 1).
A symmetric distribution which can model both tail (long and short) and center behavior (like flat, triangular or Gaussian) completely independently could be derived e.g. by using X = IH/chi.
The Tukey g- and h-distribution also allows for a deviation from normality, both through skewness and fat tails[18]