In linear algebra, a generalized eigenvector of an
n x n
A
Let
V
n
A
V
V
There may not always exist a full set of
n
A
V
A
λi
(A-λiI)
λi
A
A generalized eigenvector
xi
λi
(A-λiI)
V
Using generalized eigenvectors, a set of linearly independent eigenvectors of
A
V
J
A
A
J
x'=Ax,
A
The dimension of the generalized eigenspace corresponding to a given eigenvalue
λ
λ
There are several equivalent ways to define an ordinary eigenvector. For our purposes, an eigenvector
u
λ
n
n
A
(A-λI)u=0
I
n
n
0
n
u
(A-λI)
A
n
A
D
M
A
D=M-1AM
D
A
M
A
On the other hand, if
A
n
A
Definition: A vector
xm
A
λ
(A-λI)mxm=0
but
(A-λI)m-1xm\ne0.
Clearly, a generalized eigenvector of rank 1 is an ordinary eigenvector. Every
n
n
A
n
J
M
J=M-1AM
M
A
λ
\mu
A
\mu
λ
A
Note: For an
n x n
A
F
A
F
f(x)
A
The set spanned by all generalized eigenvectors for a given
λ
λ
Here are some examples to illustrate the concept of generalized eigenvectors. Some of the details will be described later.
This example is simple but clearly illustrates the point. This type of matrix is used frequently in textbooks.Suppose
A=\begin{pmatrix}1&1\ 0&1\end{pmatrix}.
λ=1
m=2
Notice that this matrix is in Jordan normal form but is not diagonal. Hence, this matrix is not diagonalizable. Since there is one superdiagonal entry, there will be one generalized eigenvector of rank greater than 1 (or one could note that the vector space
V
A-λI
p=1
m-p=1
The ordinary eigenvector
v1=\begin{pmatrix}1\\0\end{pmatrix}
v2
(A-λI)v2=v1.
\left(\begin{pmatrix}1&1\ 0&1\end{pmatrix}-1\begin{pmatrix}1&0\ 0&1\end{pmatrix}\right)\begin{pmatrix}v21\\v22\end{pmatrix}=\begin{pmatrix}0&1\ 0&0\end{pmatrix}\begin{pmatrix}v21\\v22\end{pmatrix}= \begin{pmatrix}1\\0\end{pmatrix}.
v22=1.
The element
v21
v2=\begin{pmatrix}a\\1\end{pmatrix}
Note that
(A-λI)v2=\begin{pmatrix}0&1\ 0&0\end{pmatrix}\begin{pmatrix}a\\1\end{pmatrix}= \begin{pmatrix}1\\0\end{pmatrix}=v1,
so that
v2
(A-λI)2v2=(A-λI)[(A-λI)v2]=(A-λI)v1=\begin{pmatrix}0&1\ 0&0\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix}= \begin{pmatrix}0\\0\end{pmatrix}=0,
so that
v1
v1
v2
V
This example is more complex than Example 1. Unfortunately, it is a little difficult to construct an interesting example of low order.The matrix
A=\begin{pmatrix}1&0&0&0&0\\ 3&1&0&0&0\\ 6&3&2&0&0\\ 10&6&3&2&0\\ 15&10&6&3&2 \end{pmatrix}
has eigenvalues
λ1=1
λ2=2
\mu1=2
\mu2=3
\gamma1=1
\gamma2=1
The generalized eigenspaces of
A
x1
λ1
x2
λ1
y1
λ2
y2
y3
λ2
(A-1I)x1 =\begin{pmatrix}0&0&0&0&0\\ 3&0&0&0&0\\ 6&3&1&0&0\\ 10&6&3&1&0\\ 15&10&6&3&1 \end{pmatrix}\begin{pmatrix} 0\ 3\ -9\ 9\ -3 \end{pmatrix}=\begin{pmatrix} 0\ 0\ 0\ 0\ 0 \end{pmatrix}=0,
(A-1I)x2 =\begin{pmatrix}0&0&0&0&0\\ 3&0&0&0&0\\ 6&3&1&0&0\\ 10&6&3&1&0\\ 15&10&6&3&1 \end{pmatrix}\begin{pmatrix} 1\ -15\ 30\ -1\ -45 \end{pmatrix}=\begin{pmatrix} 0\ 3\ -9\ 9\ -3 \end{pmatrix}=x1,
(A-2I)y1 =\begin{pmatrix}-1&0&0&0&0\\ 3&-1&0&0&0\\ 6&3&0&0&0\\ 10&6&3&0&0\\ 15&10&6&3&0 \end{pmatrix}\begin{pmatrix} 0\ 0\ 0\ 0\ 9 \end{pmatrix}=\begin{pmatrix} 0\ 0\ 0\ 0\ 0 \end{pmatrix}=0,
(A-2I)y2=\begin{pmatrix}-1&0&0&0&0\\ 3&-1&0&0&0\\ 6&3&0&0&0\\ 10&6&3&0&0\\ 15&10&6&3&0 \end{pmatrix}\begin{pmatrix} 0\ 0\ 0\ 3\ 0 \end{pmatrix}=\begin{pmatrix} 0\ 0\ 0\ 0\ 9 \end{pmatrix}=y1,
(A-2I)y3=\begin{pmatrix}-1&0&0&0&0\\ 3&-1&0&0&0\\ 6&3&0&0&0\\ 10&6&3&0&0\\ 15&10&6&3&0 \end{pmatrix}\begin{pmatrix} 0\ 0\ 1\ -2\ 0 \end{pmatrix}=\begin{pmatrix} 0\ 0\ 0\ 3\ 0 \end{pmatrix}=y2.
This results in a basis for each of the generalized eigenspaces of
A
\left\{x1,x2\right\}= \left\{ \begin{pmatrix}0\ 3\ -9\ 9\ -3\end{pmatrix}, \begin{pmatrix}1\ -15\ 30\ -1\ -45\end{pmatrix}\right\}, \left\{y1,y2,y3\right\}= \left\{\begin{pmatrix}0\ 0\ 0\ 0\ 9\end{pmatrix}, \begin{pmatrix}0\ 0\ 0\ 3\ 0\end{pmatrix}, \begin{pmatrix}0\ 0\ 1\ -2\ 0\end{pmatrix} \right\}.
An "almost diagonal" matrix
J
A
M= \begin{pmatrix}x1&x2&y1&y2&y3\end{pmatrix}= \begin{pmatrix} 0&1&0&0&0\\ 3&-15&0&0&0\\ -9&30&0&0&1\\ 9&-1&0&3&-2\\ -3&-45&9&0&0 \end{pmatrix},
J=\begin{pmatrix} 1&1&0&0&0\\ 0&1&0&0&0\\ 0&0&2&1&0\\ 0&0&0&2&1\\ 0&0&0&0&2 \end{pmatrix},
where
M
A
M
A
AM=MJ
Definition: Let
xm
A
λ
xm
\left\{xm,xm-1,...,x1\right\}
where
x1
λ
The vector
xj
λ
Definition: A set of n linearly independent generalized eigenvectors is a canonical basis if it is composed entirely of Jordan chains.
Thus, once we have determined that a generalized eigenvector of rank m is in a canonical basis, it follows that the m − 1 vectors
xm-1,xm-2,\ldots,x1
xm
Let
λi
A
\mui
(A-λiI),(A-λiI)2,\ldots,(A-λi
mi | |
I) |
mi
(A-λi
mi | |
I) |
n-\mui
A
A
Now define
\rhok=\operatorname{rank}(A-λiI)k-1-\operatorname{rank}(A-λiI)k (k=1,2,\ldots,mi).
The variable
\rhok
λi
A
\operatorname{rank}(A-λiI)0=\operatorname{rank}(I)=n
In the preceding sections we have seen techniques for obtaining the
n
V
n x n
A
Solve the characteristic equation of
A
λi
\mui
For each
λi:
Determine
n-\mui
Determine
mi
Determine
\rhok
(k=1,\ldots,mi)
Determine each Jordan chain for
λi
The matrix
A=\begin{pmatrix} 5&1&-2&4\\ 0&5&2&2\\ 0&0&5&3\\ 0&0&0&4 \end{pmatrix}
has an eigenvalue
λ1=5
\mu1=3
λ2=4
\mu2=1
n=4
λ1
n-\mu1=4-3=1
(A-5I)= \begin{pmatrix} 0&1&-2&4\\ 0&0&2&2\\ 0&0&0&3\\ 0&0&0&-1 \end{pmatrix}, \operatorname{rank}(A-5I)=3.
(A-5I)2= \begin{pmatrix} 0&0&2&-8\\ 0&0&0&4\\ 0&0&0&-3\\ 0&0&0&1 \end{pmatrix}, \operatorname{rank}(A-5I)2=2.
(A-5I)3= \begin{pmatrix} 0&0&0&14\\ 0&0&0&-4\\ 0&0&0&3\\ 0&0&0&-1 \end{pmatrix}, \operatorname{rank}(A-5I)3=1.
The first integer
m1
(A-
m1 | |
5I) |
n-\mu1=1
m1=3
We now define
\rho3=\operatorname{rank}(A-5I)2-\operatorname{rank}(A-5I)3=2-1=1,
\rho2=\operatorname{rank}(A-5I)1-\operatorname{rank}(A-5I)2=3-2=1,
\rho1=\operatorname{rank}(A-5I)0-\operatorname{rank}(A-5I)1=4-3=1.
Consequently, there will be three linearly independent generalized eigenvectors; one each of ranks 3, 2 and 1. Since
λ1
x3
λ1
but
Equations and represent linear systems that can be solved for
x3
x3=\begin{pmatrix} x31\\ x32\\ x33\\ x34\end{pmatrix}.
Then
(A-5I)3x3=\begin{pmatrix} 0&0&0&14\\ 0&0&0&-4\\ 0&0&0&3\\ 0&0&0&-1 \end{pmatrix} \begin{pmatrix} x31\\ x32\\ x33\\ x34\end{pmatrix}=\begin{pmatrix} 14x34\\ -4x34\\ 3x34\\ -x34\end{pmatrix}=\begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}
and
(A-5I)2x3=\begin{pmatrix} 0&0&2&-8\\ 0&0&0&4\\ 0&0&0&-3\\ 0&0&0&1 \end{pmatrix} \begin{pmatrix} x31\\ x32\\ x33\\ x34\end{pmatrix}=\begin{pmatrix} 2x33-8x34\\ 4x34\\ -3x34\\ x34\end{pmatrix}\ne\begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}.
Thus, in order to satisfy the conditions and, we must have
x34=0
x33\ne0
x31
x32
x31=x32=x34=0,x33=1
x3=\begin{pmatrix} 0\\ 0\\ 1\\ 0 \end{pmatrix}
as a generalized eigenvector of rank 3 corresponding to
λ1=5
x31
x32
x33
x33\ne0
Now using equations, we obtain
x2
x1
x2=(A-5I)x3=\begin{pmatrix} -2\\ 2\\ 0\\ 0 \end{pmatrix},
and
x1=(A-5I)x2=\begin{pmatrix} 2\\ 0\\ 0\\ 0 \end{pmatrix}.
λ2=4
y1=\begin{pmatrix} -14\\ 4\\ -3\\ 1 \end{pmatrix}.
A canonical basis for
A
\left\{x3,x2,x1,y1\right\}= \left\{ \begin{pmatrix}0\ 0\ 1\ 0\end{pmatrix} \begin{pmatrix}-2\ 2\ 0\ 0\end{pmatrix} \begin{pmatrix}2\ 0\ 0\ 0\end{pmatrix} \begin{pmatrix}-14\ 4\ -3\ 1\end{pmatrix} \right\}.
x1,x2
x3
λ1
y1
λ2
This is a fairly simple example. In general, the numbers
\rhok
k
Let
A
M
A
A
M
M
M
M
See main article: Jordan normal form. Let
V
\phi
V
A
\phi
f(λ)
A
f(λ)
f(λ)=\pm(λ-
\mu1 | |
λ | |
1) |
(λ-
\mu2 | |
λ | |
2) |
… (λ-
\mur | |
λ | |
r) |
,
where
λ1,λ2,\ldots,λr
A
\mui
λi
A
J
λi
\mui
λi
λi
J
A
A
Every n × n matrix
A
J
J=M-1AM
M
A
Find a matrix in Jordan normal form that is similar to
A=\begin{pmatrix} 0&4&2\\ -3&8&3\\ 4&-8&-2 \end{pmatrix}.
Solution: The characteristic equation of
A
(λ-2)3=0
λ=2
\operatorname{rank}(A-2I)=1
and
\operatorname{rank}(A-2I)2=0=n-\mu.
Thus,
\rho2=1
\rho1=2
A
\left\{x2,x1\right\}
\left\{y1\right\}
M=\begin{pmatrix}y1&x1&x2\end{pmatrix}
M=\begin{pmatrix} 2&2&0\\ 1&3&0\\ 0&-4&1 \end{pmatrix},
and
J=\begin{pmatrix} 2&0&0\\ 0&2&1\\ 0&0&2 \end{pmatrix},
where
M
A
M
A
AM=MJ
M
J
M
J
In Example 3, we found a canonical basis of linearly independent generalized eigenvectors for a matrix
A
A
M= \begin{pmatrix}y1&x1&x2&x3\end{pmatrix}= \begin{pmatrix} -14&2&-2&0\\ 4&0&2&0\\ -3&0&0&1\\ 1&0&0&0 \end{pmatrix}.
A matrix in Jordan normal form, similar to
A
J=\begin{pmatrix} 4&0&0&0\\ 0&5&1&0\\ 0&0&5&1\\ 0&0&0&5 \end{pmatrix},
so that
AM=MJ
See main article: Matrix function. Three of the most fundamental operations which can be performed on square matrices are matrix addition, multiplication by a scalar, and matrix multiplication. These are exactly those operations necessary for defining a polynomial function of an n × n matrix
A
A
D=M-1AM,
with
D=\begin{pmatrix} λ1&0& … &0\\ 0&λ2& … &0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0& … &λn \end{pmatrix},
then
Dk=\begin{pmatrix}
k | |
λ | |
1 |
&0& … &0\\ 0&
k | |
λ | |
2 |
& … &0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0& … &
k \end{pmatrix} | |
λ | |
n |
and the evaluation of the Maclaurin series for functions of
A
A
Dk
Dk
M
M-1
Using generalized eigenvectors, we can obtain the Jordan normal form for
A
See main article: Ordinary differential equation. Consider the problem of solving the system of linear ordinary differential equations
where
x=\begin{pmatrix} x1(t)\\ x2(t)\\ \vdots\\ xn(t) \end{pmatrix}, x'=\begin{pmatrix} x1'(t)\\ x2'(t)\\ \vdots\\ xn'(t) \end{pmatrix},
A=(aij).
If the matrix
A
aij=0
i\nej
In this case, the general solution is given by
x1=k1
a11t | |
e |
x2=k2
a22t | |
e |
\vdots
xn=kn
annt | |
e |
.
In the general case, we try to diagonalize
A
A
D=M-1AM
M
A
A=MDM-1
M-1x'=D(M-1x)
where
The solution of is
y1=k1
λ1t | |
e |
y2=k2
λ2t | |
e |
\vdots
yn=kn
λnt | |
e |
.
The solution
x
On the other hand, if
A
M
A
J=M-1AM
A
y'=Jy
where the
λi
J
\epsiloni
J
yn
yn=kn
λnt | |
e |
yn
yn-1
y
x
Lemma:
Given the following chain of generalized eigenvectors of length
r,
X1=
λt | |
v | |
1e |
X2=(tv1+v
λt | |
2)e |
X3=\left(
t2 | |
2 |
v1+tv2+v
λt | |
3\right)e |
\vdots
Xr=\left(
tr-1 | |
(r-1)! |
v | ||||
|
vr-2+tvr-1
λt | |
+v | |
r\right)e |
X'=AX.
Define
λt | |
X | |
j(t)=e |
| ||||
\sum | ||||
i=1 |
vi.
λt | |
X' | |
j(t)=e |
| ||||
\sum | ||||
i=1 |
λt | |
v | |
i+e |
| ||||
λ\sum | ||||
i=1 |
vi
λt | |
AX | |
j(t)=e |
| ||||
\sum | ||||
i=1 |
Avi
=eλ
| ||||
\sum | ||||
i=1 |
(vi-1+λvi)
=eλ
| ||||
\sum | ||||
i=1 |
vi-1+eλ
| ||||
λ\sum | ||||
i=1 |
vi
=eλ
| ||||
\sum | ||||
i=1 |
vi+eλ
| ||||
λ\sum | ||||
i=1 |
vi
=X'j(t)