In logic, general frames (or simply frames) are Kripke frames with an additional structure, which are used to model modal and intermediate logics. The general frame semantics combines the main virtues of Kripke semantics and algebraic semantics: it shares the transparent geometrical insight of the former, and robust completeness of the latter.
A modal general frame is a triple
F=\langleF,R,V\rangle
\langleF,R\rangle
R
F
V
F
\Box
\BoxA=\{x\inF\mid\forally\inF(xRy\toy\inA)\}
V
\langleF,R,\Vdash\rangle
\langleF,R\rangle
F
\{x\inF\midx\Vdashp\}\inV
p
V
\{x\inF\midx\VdashA\}
V
A
A formula
A
F
x\VdashA
\Vdash
x\inF
L
F
L
F
F
L
A Kripke frame
\langleF,R\rangle
\langleF,R,l{P}(F)\rangle
lP(F)
F
In full generality, general frames are hardly more than a fancy name for Kripke models; in particular, the correspondence of modal axioms to properties on the accessibility relation is lost. This can be remedied by imposing additional conditions on the set of admissible valuations.
A frame
F=\langleF,R,V\rangle
\forallA\inV(x\inA\Leftrightarrowy\inA)
x=y
\forallA\inV(x\in\BoxA ⇒ y\inA)
xRy
V
V
Kripke frames are refined and atomic. However, infinite Kripke frames are never compact. Every finite differentiated or atomic frame is a Kripke frame.
Descriptive frames are the most important class of frames because of the duality theory (see below). Refined frames are useful as a common generalization of descriptive and Kripke frames.
Every Kripke model
\langleF,R,{\Vdash}\rangle
\langleF,R,V\rangle
V
V=\{\{x\inF\midx\VdashA\}\midA\hbox{isaformula}\}.
The fundamental truth-preserving operations of generated subframes, p-morphic images, and disjoint unions of Kripke frames have analogues on general frames. A frame
G=\langleG,S,W\rangle
F=\langleF,R,V\rangle
\langleG,S\rangle
\langleF,R\rangle
G
F
R
S=R\capG x G
W=\{A\capG\midA\inV\}.
f\colonF\toG
F
G
\langleF,R\rangle
\langleG,S\rangle
f-1[A]\inV
A\inW
Fi=\langleFi,Ri,Vi\rangle
i\inI
F=\langleF,R,V\rangle
F
\{Fi\midi\inI\}
R
\{Ri\midi\inI\}
V=\{A\subseteqF\mid\foralli\inI(A\capFi\inVi)\}.
The refinement of a frame
F=\langleF,R,V\rangle
G=\langleG,S,W\rangle
x\simy\iff\forallA\inV(x\inA\Leftrightarrowy\inA),
G=F/{\sim}
\sim
\langlex/{\sim},y/{\sim}\rangle\inS\iff\forallA\inV(x\in\BoxA ⇒ y\inA),
A/{\sim}\inW\iffA\inV.
Unlike Kripke frames, every normal modal logic
L
L
\langleF,R,{\Vdash}\rangle
L
\langleF,R,{\Vdash}\rangle
L
L
L
L
General frames bear close connection to modal algebras. Let
F=\langleF,R,V\rangle
V
\langlelP(F),\cap,\cup,-\rangle
\Box
\langleV,\cap,\cup,-,\Box\rangle
F
F+
In the opposite direction, it is possible to construct the dual frame
A+=\langleF,R,V\rangle
A=\langleA,\wedge,\vee,-,\Box\rangle
\langleA,\wedge,\vee,-\rangle
F
A
V
A+
F
R
xRy\iff\foralla\inA(\Boxa\inx ⇒ a\iny)
x
y
A frame and its dual validate the same formulas; hence the general frame semantics and algebraic semantics are in a sense equivalent. The double dual
+ | |
(A | |
+) |
A
F
+) | |
(F | |
+ |
It is also possible to define duals of p-morphisms on one hand, and modal algebra homomorphisms on the other hand. In this way the operators
( ⋅ )+
( ⋅ )+
The frame semantics for intuitionistic and intermediate logics can be developed in parallel to the semantics for modal logics. An intuitionistic general frame is a triple
\langleF,\le,V\rangle
\le
F
V
F
A\toB=\Box(-A\cupB)
F=\langleF,\le,V\rangle
\forallA\inV(x\inA\Leftrightarrowy\inA)
x\ley
V\cup\{F-A\midA\inV\}
The dual of an intuitionistic frame
F=\langleF,\le,V\rangle
F+=\langleV,\cap,\cup,\to,\emptyset\rangle
A=\langleA,\wedge,\vee,\to,0\rangle
A+=\langleF,\le,V\rangle
F
A
\le
V
F
\{x\inF\mida\inx\},
a\inA
( ⋅ )+
( ⋅ )+
It is possible to construct intuitionistic general frames from transitive reflexive modal frames and vice versa, see modal companion.