Lemniscate constant explained

In mathematics, the lemniscate constant [1] [2] [3] [4] is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of for the circle. Equivalently, the perimeter of the lemniscate

(x2+y2)2=x2-y2

is . The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755.[5] [6] It also appears in evaluation of the gamma and beta function at certain rational values. The symbol is a cursive variant of ; see Pi § Variant pi.

Sometimes the quantities or are referred to as the lemniscate constant.[7] [8]

As of 2024 over 1.2 trillion digits of this constant have been calculated.[9]

History

Gauss's constant, denoted by G, is equal to [10] and named after Carl Friedrich Gauss, who calculated it via the arithmetic–geometric mean as

1/Ml(1,\sqrt{2}r)

.[5] By 1799, Gauss had two proofs of the theorem that

Ml(1,\sqrt2r)=\pi/\varpi

where

\varpi

is the lemniscate constant.

John Todd named two more lemniscate constants, the first lemniscate constant and the second lemniscate constant .[11] [12] [13]

The lemniscate constant

\varpi

and Todd's first lemniscate constant

A

were proven transcendental by Theodor Schneider in 1937 and Todd's second lemniscate constant

B

and Gauss's constant

G

were proven transcendental by Theodor Schneider in 1941.[14] In 1975, Gregory Chudnovsky proved that the set

\{\pi,\varpi\}

is algebraically independent over

Q

, which implies that

A

and

B

are algebraically independent as well.[15] [16] But the set

l\{\pi,Ml(1,1/\sqrt{2}r),M'l(1,1/\sqrt{2}r)r\}

(where the prime denotes the derivative with respect to the second variable) is not algebraically independent over

Q

. In fact,[17]

\pi=2\sqrt\frac=\frac.

Forms

Usually,

\varpi

is defined by the first equality below.[18] [19]

\begin\varpi&= 2\int_0^1\frac = \sqrt2\int_0^\infty\frac = \int_0^1\frac = \int_1^\infty \frac\\[6mu]&= 4\int_0^\infty\Bigl(\sqrt[4]-t\Bigr)\,\mathrmt = 2\sqrt2\int_0^1 \sqrt[4]\mathop =3\int_0^1 \sqrt\,\mathrm dt\\[2mu]&= 2K(i) = \tfrac\Beta\bigl(\tfrac14, \tfrac12\bigr) = \tfrac\Beta\bigl(\tfrac14, \tfrac14\bigr) = \frac = \frac\frac\\[5mu]&= 2.62205\;75542\;92119\;81046\;48395\;89891\;11941\ldots,\end

where is the complete elliptic integral of the first kind with modulus, is the beta function, is the gamma function and is the Riemann zeta function.

M

,

\varpi=\frac.

Moreover,

e^=\frac

which is analogous to

e^=\frac

where

\beta

is the Dirichlet beta function and

\zeta

is the Riemann zeta function.[20]

The lemniscate constant is equal to

\varpi = \tfrac\Beta\bigl(\tfrac14, \tfrac12\bigr)

where Β denotes the beta function. A formula for in terms of Jacobi theta functions is given by

\varpi = \pi\vartheta_^2\left(e^\right)

Gauss's constant is typically defined as the reciprocal of the arithmetic–geometric mean of 1 and the square root of 2, after his calculation of

Ml(1,\sqrt2r)

published in 1800:G = \fracJohn Todd's lemniscate constants may be given in terms of the beta function B:\beginA &= \frac\varpi2 = \tfrac14 \Beta \bigl(\tfrac14,\tfrac12\bigr), \\[3mu]B &= \frac =\tfrac14\Beta \bigl(\tfrac12,\tfrac34\bigr).\end

Series

Viète's formula for can be written:

\frac2\pi = \sqrt\frac12 \cdot \sqrt \cdot \sqrt \cdots

An analogous formula for is:[21]

\frac2\varpi = \sqrt\frac12 \cdot \sqrt \cdot \sqrt \cdots

The Wallis product for is:

\frac = \prod_^\infty \left(1+\frac\right)^=\prod_^ \left(\frac \cdot \frac\right)= \biggl(\frac \cdot \frac\biggr) \biggl(\frac \cdot \frac\biggr) \biggl(\frac \cdot \frac\biggr) \cdots

An analogous formula for is:[22]

\frac = \prod_^\infty \left(1+\frac\right)^=\prod_^ \left(\frac \cdot \frac\right)= \biggl(\frac \cdot \frac\biggr) \biggl(\frac \cdot \frac\biggr) \biggl(\frac \cdot \frac\biggr) \cdots

A related result for Gauss's constant (

G=\varpi/\pi

) is:[23]

\frac = \prod_^ \left(\frac \cdot \frac\right)= \biggl(\frac \cdot \frac\biggr) \biggl(\frac \cdot \frac\biggr) \biggl(\frac \cdot \frac\biggr) \cdots

An infinite series discovered by Gauss is:[24]

\frac = \sum_^\infty (-1)^n \prod_^n \frac = 1 - \frac + \frac - \frac + \cdots

The Machin formula for is \tfrac14\pi = 4 \arctan \tfrac15 - \arctan \tfrac1, and several similar formulas for can be developed using trigonometric angle sum identities, e.g. Euler's formula \tfrac14\pi = \arctan\tfrac12 + \arctan\tfrac13. Analogous formulas can be developed for, including the following found by Gauss:

\tfrac12\varpi=2\operatorname{arcsl}\tfrac12+\operatorname{arcsl}\tfrac7{23}

, where

\operatorname{arcsl}

is the lemniscate arcsine.[25]

The lemniscate constant can be rapidly computed by the series[26] [27]

\varpi=2-1/2\pil(\sumn\inZ

-\pin2
e

r)2=21/4\pie-\pi/12l(\sumn\inZ(-1)n

-\pipn
e

r)2

where

2-n)
p
n=\tfrac12(3n
(these are the generalized pentagonal numbers). Also[28]

\summ,n\inZ

-2\pi(m2+mn+n2)
e

=\sqrt{1+\sqrt{3}}\dfrac{\varpi}{121/8\pi}.

In a spirit similar to that of the Basel problem,

\sumz\inZ[i]\setminus\{0\

}\frac=G_4(i)=\fracwhere

Z[i]

are the Gaussian integers and

G4

is the Eisenstein series of weight (see Lemniscate elliptic functions § Hurwitz numbers for a more general result).[29]

A related result is

infty
\sum
n=1
-2\pin
\sigma=
3(n)e
\varpi4-
80\pi4
1
240
where

\sigma3

is the sum of positive divisors function.[30]

In 1842, Malmsten found

infty
\beta'(1)=\sum
n=1

(-1)n+1

log(2n+1)=
2n+1
\pi\left(\gamma+2log
4
\pi
\varpi\sqrt{2
}\right)

where

\gamma

is Euler's constant and

\beta(s)

is the Dirichlet-Beta function.

The lemniscate constant is given by the rapidly converging series

\varpi = \pi\sqrt[4]e^\biggl(\sum_^\infty (-1)^n e^ \biggr)^2.

The constant is also given by the infinite product

\varpi=

infty
\pi\prod
m=1

\tanh2\left(

\pim
2

\right).

Continued fractions

A (generalized) continued fraction for is\frac\pi2=1 + \cfracAn analogous formula for is[12] \frac\varpi2= 1 + \cfrac

Define Brouncker's continued fraction by[31] b(s)=s + \cfrac,\quad s>0.Let

n\ge0

except for the first equality where

n\ge1

. Then[32] [33] \beginb(4n)&=(4n+1)\prod_^n \frac\frac\\b(4n+1)&=(2n+1)\prod_^n \frac\frac\\b(4n+2)&=(4n+1)\prod_^n \frac\frac\\b(4n+3)&=(2n+1)\prod_^n \frac\,\pi.\endFor example,\beginb(1)&=\frac\\b(2)&=\frac\\b(3)&=\pi\\b(4)&=\frac.\end

Simple continued fractions

Simple continued fractions for the lemniscate constant and related constants include[34] [35] \begin\varpi &= [2,1,1,1,1,1,4,1,2,\ldots], \\[8mu]2\varpi &= [5,4,10,2,1,2,3,29,\ldots], \\[5mu]\frac &= [1,3,4,1,1,1,5,2,\ldots], \\[2mu]\frac &= [0,1,5,21,3,4,14,\ldots].\end

Integrals

The lemniscate constant is related to the area under the curve

x4+y4=1

. Defining

\pinl{:=}\Betal(\tfrac1n,\tfrac1nr)

, twice the area in the positive quadrant under the curve

xn+yn=1

is 2 \int_0^1 \sqrt[n]\mathop = \tfrac1n \pi_n. In the quartic case,

\tfrac14\pi4=\tfrac1\sqrt{2}\varpi.

In 1842, Malmsten discovered that[36]

\int_0^1 \frac\, dx=\frac\log\frac.

Furthermore,\int_0^\infty \frace^\, dx=\log\frac

and[37]

\int_0^\infty e^\, dx=\frac,\quad\text\,\int_0^\infty e^\, dx=\frac,a form of Gaussian integral.

The lemniscate constant appears in the evaluation of the integrals

= \int_0^\sqrt\,dx=\int_0^\sqrt\,dx

\frac = \int_0^

John Todd's lemniscate constants are defined by integrals:[11]

A = \int_0^1\frac

B = \int_0^1\frac

Circumference of an ellipse

The lemniscate constant satisfies the equation

\frac = 2 \int_0^1\frac

Euler discovered in 1738 that for the rectangular elastica (first and second lemniscate constants)[38]

\textrm\ \textrm\cdot\textrm = A \cdot B = \int_0^1 \frac \cdot \int_0^1 \frac = \frac\varpi2 \cdot \frac\pi = \frac\pi4

Now considering the circumference

C

of the ellipse with axes

\sqrt{2}

and

1

, satisfying

2x2+4y2=1

, Stirling noted that

\frac = \int_0^1\frac + \int_0^1\frac

Hence the full circumference is

C = \frac + \varpi =3.820197789\ldots

This is also the arc length of the sine curve on half a period:[39]

C = \int_0^\pi \sqrt\,dx

Other limits

Analogously to2\pi=\lim_\left|\frac\right|^where

Bn

are Bernoulli numbers, we have2\varpi=\lim_\left(\frac\right)^where

Hn

are Hurwitz numbers.

References

External links

Notes and References

  1. Book: Gauss . C. F. . Werke (Band III). Herausgegeben der Königlichen Gesellschaft der Wissenschaften zu Göttingen . Latin, German. 1866. p. 404
  2. Book: Eymard . Pierre . Lafon. Jean-Pierre . The Number Pi . American Mathematical Society . 2004 . 0-8218-3246-8. p. 199
  3. Book: Bottazzini . Umberto . Umberto Bottazzini . Gray . Jeremy . Jeremy Gray . 2013 . Hidden Harmony – Geometric Fantasies: The Rise of Complex Function Theory . Springer . 10.1007/978-1-4614-5725-1 . 978-1-4614-5724-4 . p. 57
  4. Book: Arakawa . Tsuneo . Ibukiyama. Tomoyoshi . Kaneko. Masanobu. Bernoulli Numbers and Zeta Functions . Springer . 2014 . 978-4-431-54918-5. p. 203
  5. Book: Finch . Steven R. . Mathematical Constants . 18 August 2003 . Cambridge University Press . 978-0-521-81805-6 . 420 . en.
  6. Web site: A062539 - Oeis .
  7. Web site: A064853 - Oeis .
  8. Web site: Lemniscate Constant.
  9. Web site: Records set by y-cruncher . 2024-08-20 . numberworld.org.
  10. Web site: A014549 - Oeis .
  11. Todd . John . January 1975 . The lemniscate constants . . 18 . 14–19 . 10.1145/360569.360580 . 85873 . free . 1.
  12. Web site: A085565 - Oeis .
  13. Web site: A076390 - Oeis .
  14. Theodor . Schneider . Zur Theorie der Abelschen Funktionen und Integrale . 1941 . Journal für die reine und angewandte Mathematik . 183 . 19 . 110–128 . 10.1515/crll.1941.183.110 . 118624331 .
  15. G. V. Choodnovsky: Algebraic independence of constants connected with the functions of analysis, Notices of the AMS 22, 1975, p. A-486
  16. G. V. Chudnovsky: Contributions to The Theory of Transcendental Numbers, American Mathematical Society, 1984, p. 6
  17. Book: Borwein . Jonathan M. . Borwein. Peter B. . Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity . Wiley-Interscience . 1987 . First . 0-471-83138-7. p. 45
  18. Book: Finch . Steven R. . Mathematical Constants . 18 August 2003 . Cambridge University Press . 978-0-521-81805-6 . 420–422 . en.
  19. Book: Some milestones of lemniscatomy  . Schappacher . Norbert . Norbert Schappacher . 1997 . Sertöz . S. . Algebraic Geometry . Proceedings of Bilkent Summer School, August 7–19, 1995, Ankara, Turkey . Marcel Dekker . 257–290 . http://irma.math.unistra.fr/~schappa/NSch/Publications_files/1997_LemniscProvis.pdf.
  20. Web site: A113847 - Oeis .
  21. Levin (2006)
  22. Hyde (2014) proves the validity of a more general Wallis-like formula for clover curves; here the special case of the lemniscate is slightly transformed, for clarity.
  23. Hyde . Trevor . 2014 . A Wallis product on clovers . The American Mathematical Monthly . 121 . 3 . 237–243 . 10.4169/amer.math.monthly.121.03.237 . 34819500 .
  24. Book: Bottazzini . Umberto . Umberto Bottazzini . Gray . Jeremy . Jeremy Gray . 2013 . Hidden Harmony – Geometric Fantasies: The Rise of Complex Function Theory . Springer . 10.1007/978-1-4614-5725-1 . 978-1-4614-5724-4 . p. 60
  25. Todd (1975)
  26. for the first equality. The second equality can be proved by using the pentagonal number theorem.
  27. Book: Berndt . Bruce C. . Ramanujan's Notebooks Part V . Springer . 1998 . 978-1-4612-7221-2. p. 326
  28. This formula can be proved by hypergeometric inversion: Let

    \operatorname{a}(q)=\summ,n\inZ

    m2+mn+n2
    q
    where

    q\inC

    with

    \left|q\right|<1

    . Then

    \operatorname{a}(q)={}2F

    ,
    1\left(1
    3
    2
    3

    ,1,z\right)

    where
    q=\exp\left(-2\pi
    \sqrt{3
    }\frac\right)where

    z\inC\setminus\{0,1\}

    . The formula in question follows from setting z=\tfrac14\bigl(3\sqrt-5\bigr).
  29. Book: Eymard . Pierre . Lafon. Jean-Pierre . The Number Pi . American Mathematical Society . 2004 . 0-8218-3246-8. p. 232
  30. Web site: Level-one elliptic modular forms . Garrett . Paul . University of Minnesota. p. 11—13
  31. Book: Khrushchev . Sergey . Orthogonal Polynomials and Continued Fractions . Cambridge University Press . 2008 . First . 978-0-521-85419-1. p. 140 (eq. 3.34), p. 153. There's an error on p. 153:

    4[\Gamma(3+s/4)/\Gamma(1+s/4)]2

    should be

    4[\Gamma((3+s)/4)/\Gamma((1+s)/4)]2

    .
  32. Book: Khrushchev . Sergey . Orthogonal Polynomials and Continued Fractions . Cambridge University Press . 2008 . First . 978-0-521-85419-1. p. 146, 155
  33. Book: Perron . Oskar . German . Oskar Perron. Die Lehre von den Kettenbrüchen: Band II . B. G. Teubner . 1957 . Third. p. 36, eq. 24
  34. Web site: A062540 - OEIS . 2022-09-14 . oeis.org.
  35. Web site: A053002 - OEIS. oeis.org.
  36. Blagouchine . Iaroslav V. . 2014 . Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results . The Ramanujan Journal . 35 . 1 . 21–110. 10.1007/s11139-013-9528-5 . 120943474 .
  37. Web site: A068467 - Oeis .
  38. Levien (2008)
  39. Web site: An Eloquent Formula for the Perimeter of an Ellipse. Adlaj. Semjon. 2012. American Mathematical Society. 1097. One might also observe that the length of the “sine” curve over half a period, that is, the length of the graph of the function sin(t) from the point where t = 0 to the point where t = π, is

    \sqrt{2}l(1/\sqrt{2})=L+M

    .. In this paper

    M=1/G=\pi/\varpi

    and

    L=\pi/M=G\pi=\varpi

    .