The Gas Dynamic Trap is a magnetic mirror machine being operated at the Budker Institute of Nuclear Physics in Akademgorodok, Russia.
DimensionsThe plasma inside the machine fills a cylinder of space, 7 meters long and 28 centimeters in diameter.[1] The magnetic field varies along this tube. In the center the field is low; reaching (at most) 0.35 Teslas. The field rises to as high as 15 Teslas at the ends.[1] This change in the strength is needed to reflect the particles and get them internally trapped (see: the magnetic mirror effect).
HeatingThe plasma is heated using two methods, simultaneously. The first is neutral beam injection, where a hot (25 keV), neutral beam of material is shot into the machine at a rate of 5 megawatts.[1] The second is Electron cyclotron resonance heating, where electromagnetic waves are used to heat a plasma, analogous to microwaving it. PerformanceAs of 2016, the machine had achieved a plasma trapping beta of 0.6 for 5 milliseconds.[2] It had reached an electron temperature of 1 keV using the method of Electron cyclotron resonance heating. It had reached an ion density of 1×1020 ions/m3.[1] The machine loses material out of the ends of the mirror [3] but material is replenished at such a rate as to maintain a density inside the machine.[3]
During any given experiment, operators can choose from at least 15 fusion diagnostics to measure the machines' behavior:[2]