Game Description Language Explained

Game Description Language (GDL) is a specialized logic programming language designed by Michael Genesereth. The goal of GDL is to allow the development of AI agents capable of general game playing. It is part of the General Game Playing Project at Stanford University.

GDL is a tool for expressing the intricacies of game rules and dynamics in a form comprehensible to AI systems through a combination of logic-based constructs and declarative principles.

In practice GDL is often used for General Game Playing competitions and research endeavors. In these contexts, GDL is used to specify the rules of games that AI agents are expected to play. AI developers and researchers harness GDL to create algorithms that can comprehend and engage with games based on their rule descriptions. The use of GDL paves the way for the development of highly adaptable AI agents, capable of competing and excelling in diverse gaming scenarios.

This innovation is a testament to the convergence of logic-based formalism and the world of games, opening new horizons for AI's potential in understanding and mastering a multitude of games. Game Description Language equips AI with a universal key to unlock the mysteries of diverse game environments and strategies.

Purpose of GDL

Quoted in an article in New Scientist, Genesereth pointed out that although Deep Blue can play chess at a grandmaster level, it is incapable of playing checkers at all because it is a specialized game player.[1] Both chess and checkers can be described in GDL. This enables general game players to be built that can play both of these games and any other game that can be described using GDL.

Specification

Syntax

GDL is a variant of Datalog, and the syntax is largely the same. It is usually given in prefix notation. Variables begin with "?".[2]

Keywords

The following is the list of keywords in GDL, along with brief descriptions of their functions:

distinct
  • This predicate is used to require that two terms be syntactically different.
    does
  • The predicate does(?r,?m) means that player (or role) ?r makes move ?m in the current game state.
    goal
  • The predicate goal(?r,?n) is used to define goal value ?n (usually a natural number between 0 and 100) for role ?r in the current state.
    init
  • This predicate refers to a true fact about the initial game state.
    legal
  • The predicate legal(?r,?m) means that ?m is a legal move for role ?r in the current state.
    next
  • This predicate refers to a true fact about the next game state.
    role
  • This predicate is used to add the name of a player.
    terminal
  • This predicate means that the current state is terminal.
    true
  • This predicate refers to a true fact about the current game state.

    Rules

    A game description in GDL provides complete rules for each of the following elements of a game.

    Players

    Facts that define the roles in a game. The following example is from a GDL description of the two-player game Tic-tac-toe:

    (role xplayer)
    (role oplayer)
    

    Initial state

    Rules that entail all facts about the initial game state. An example is:

    (init (cell 1 1 blank))
    ...
    (init (cell 3 3 blank))
    (init (control xplayer))
    

    Legal moves

    Rules that describe each move by the conditions on the current position under which it can be taken by a player. An example is:(<= (legal ?player (mark ?m ?n)) (true (cell ?m ?n blank)) (true (control ?player)))

    Game state update

    Rules that describe all facts about the next state relative to the current state and the moves taken by the players. An example is:(<= (next (cell ?m ?n x)) (does xplayer (mark ?m ?n)))(<= (next (cell ?m ?n o)) (does oplayer (mark ?m ?n)))

    Termination

    Rules that describe the conditions under which the current state is a terminal one. An example is:

    (<= terminal
        (line x))
    (<= terminal
        (line o))
    (<= terminal
        not boardopen)
    

    Goal states

    The goal values for each player in a terminal state. An example is:(<= (goal xplayer 100) (line x))(<= (goal oplayer 0) (line x))

    Extensions

    GDL-II

    With GDL, one can describe finite games with an arbitrary number of players. However, GDL cannot describe games that contain an element of chance (for example, rolling dice) or games where players have incomplete information about the current state of the game (for example, in many card games the opponents' cards are not visible). GDL-II, the Game Description Language for Incomplete Information Games, extends GDL by two keywords that allow for the description of elements of chance and incomplete information:[3]

    sees
  • The predicate sees(?r,?p) means that role ?r perceives ?p in the next game state.
    random
  • This constant refers to a pre-defined player who chooses moves randomly.

    The following is an example from a GDL-II description of the card game Texas hold 'em:(<= (sees ?player ?card) (does random (deal_face_down ?player ?card)))(<= (sees ?r ?card) (role ?r) (does random (deal_river ?card)))

    GDL-III

    Michael Thielscher also created a further extension, GDL-III, a general game description language with imperfect information and introspection, that supports the specification of epistemic games — ones characterised by rules that depend on the knowledge of players.[4]

    Other formalisms and languages for game representation

    In classical game theory, games can be formalised in extensive and normal forms. For cooperative game theory, games are represented using characteristic functions. Some subclasses of games allow special representations in smaller sizes also known as succinct games. Some of the newer developments of formalisms and languages for representation of some subclasses of games or representations adjusted to the needs of interdisciplinary research are summarized as the following table.[5] Some of these alternative representations also encode time-related aspects:

    NameYearMeansType of gamesTime
    Congestion game[6] 1973functionssubset of n-person games, simultaneous movesNo
    Sequential form[7] 1994matrices2-person games of imperfect informationNo
    Timed games[8] [9] 1994functions2-person gamesYes
    Gala[10] 1997logicn-person games of imperfect informationNo
    Graphical games[11] [12] 2001graphs, functionsn-person games, simultaneous movesNo
    Local effect games[13] 2003functionssubset of n-person games, simultaneous movesNo
    Game Petri-nets[14] 2006Petri netdeterministic n-person games, simultaneous movesNo
    Continuous games[15] 2007functionssubset of 2-person games of imperfect informationYes
    PNSI[16] [17] 2008Petri netn-person games of imperfect informationYes
    Action graph games[18] 2012graphs, functionsn-person games, simultaneous movesNo

    Applications

    A 2016 paper "describes a multilevel algorithm compiling a general game description in GDL into an optimized reasoner in a low level language".[19]

    A 2017 paper uses GDL to model the process of mediating a resolution to a dispute between two parties and presented an algorithm that uses available information efficiently to do so.[20]

    See also

    External links

    Notes and References

    1. Web site: Producing the ultimate game-playing bots - tech - 29 July 2006 - New Scientist Tech. Biever. Celeste. 2006-07-29. https://web.archive.org/web/20070811111042/http://www.newscientisttech.com/channel/tech/mg19125626.100.html. 11 August 2007. live.
    2. Web site: Love . N . Genesereth . M . Hinrichs . T . General game playing: game description language specification. Tech. Rep. LG-2006-01 . Stanford University . Stanford University, Stanford . 1 July 2019 . 2006.
    3. Thielscher . M . Fox . M . Poole . D . A general game description language for incomplete information games . Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010 . 2010 . 1 July 2019 . AAAI Press . Atlanta.
    4. Book: Thielscher . Michael . Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence . 2017 . IJCAI . 978-0-9992411-0-3 . https://www.ijcai.org/proceedings/2017/0177.pdf . 1 July 2019 . GDL-III: A Description Language for Epistemic General Game Playing.
    5. Tagiew . Rustam . If more than Analytical Modeling is Needed to Predict Real Agents' Strategic Interaction . 3 May 2011 . 1105.0558 . cs.GT .
    6. Rosenthal . Robert W. . Robert W. Rosenthal . A class of games possessing pure-strategy Nash equilibria . International Journal of Game Theory . December 1973 . 2 . 1 . 65–67 . 10.1007/BF01737559. 121904640 .
    7. Book: Koller . Daphne . Daphne Koller . Megiddo . Nimrod . Nimrod Megiddo . von Stengel . Bernhard . Proceedings of the twenty-sixth annual ACM symposium on Theory of computing - STOC '94 . Fast algorithms for finding randomized strategies in game trees . 750–759 . 1994 . 10.1145/195058.195451 . 0-89791-663-8 . 1893272 .
    8. Alur . Rajeev . Dill . David L. . A theory of timed automata . Theoretical Computer Science . April 1994 . 126 . 2 . 183–235 . 10.1016/0304-3975(94)90010-8. free .
    9. Tomlin . C.J. . Lygeros . J. . Shankar Sastry . S. . A game theoretic approach to controller design for hybrid systems . Proceedings of the IEEE . July 2000 . 88 . 7 . 949–970 . 10.1109/5.871303. 1844682 . 10.1.1.129.8347 .
    10. Koller . Daphne . Pfeffer . Avi . Representations and solutions for game-theoretic problems . Artificial Intelligence . 1997 . 94 . 1–2 . 167–215 . 10.1016/S0004-3702(97)00023-4 . free .
    11. Michael . Michael Kearns . Littman . Michael L. . Graphical Models for Game Theory . In UAI . 2001 . 253–260 . 10.1.1.22.5705 .
    12. Kearns . Michael . Littman . Michael L. . Singh . Satinder . Graphical Models for Game Theory . 7 March 2011 . 1301.2281 . cs.GT.
    13. Leyton-Brown . Kevin . Tennenholtz . Moshe . Local-effect games . IJCAI'03: Proceedings of the 18th International Joint Conference on Artificial Intelligence . 2003 . 772–777 .
    14. Clempner . Julio . Modeling shortest path games with Petri nets: a Lyapunov based theory . International Journal of Applied Mathematics and Computer Science . 2006 . 16 . 3 . 387–397 . EN . 1641-876X.
    15. Sannikov . Yuliy . Games with Imperfectly Observable Actions in Continuous Time . Econometrica . September 2007 . 75 . 5 . 1285–1329 . 10.1111/j.1468-0262.2007.00795.x .
    16. Book: Tagiew . Rustam . 2008 International Conference on Computational Intelligence for Modelling Control & Automation . Multi-Agent Petri-Games . December 2008 . 130–135 . 10.1109/CIMCA.2008.15 . 978-0-7695-3514-2 . 16679934 .
    17. Book: Tagiew . Rustam . On Multi-agent Petri Net Models for Computing Extensive Finite Games . New Challenges in Computational Collective Intelligence . 244 . 2009 . 243–254 . 10.1007/978-3-642-03958-4_21 . Springer . en. Studies in Computational Intelligence . 978-3-642-03957-7 .
    18. Bhat . Navin . Leyton-Brown . Kevin . Computing Nash Equilibria of Action-Graph Games . 11 July 2012 . 1207.4128 . cs.GT.
    19. Book: Kowalski . Jakub . Szykuła . Marek . AI 2013: Advances in Artificial Intelligence: 26th Australasian Joint Conference, Dunedin, New Zealand, December 1-6, 2013. Proceedings . 2013 . 234–245 . https://www.researchgate.net/publication/289992641 . 1 July 2019 . Game Description Language Compiler Construction.
    20. de Jonge . Dave . Trescak . Tomas . Sierra . Carles . Simoff . Simeon . López de Mántaras . Ramon . 2017 . Using Game Description Language for mediated dispute resolution . AI & Society . 2017 . 4 . Springer . 767–784 . 10.1007/s00146-017-0790-8 . 22738517 .