Galilei-covariant tensor formulation explained

The Galilei-covariant tensor formulation is a method for treating non-relativistic physics using the extended Galilei group as the representation group of the theory. It is constructed in the light cone of a five dimensional manifold.

Takahashi et al., in 1988, began a study of Galilean symmetry, where an explicitly covariant non-relativistic field theory could be developed. The theory is constructed in the light cone of a (4,1) Minkowski space.[1] [2] [3] [4] Previously, in 1985, Duval et al. constructed a similar tensor formulation in the context of Newton–Cartan theory.[5] Some other authors also have developed a similar Galilean tensor formalism.[6] [7]

Galilean manifold

The Galilei transformations are

\begin{align} x'&=Rx-vt+a\\ t'&=t+b. \end{align}

where

R

stands for the three-dimensional Euclidean rotations,

v

is the relative velocity determining Galilean boosts, a stands for spatial translations and b, for time translations. Consider a free mass particle

m

; the mass shell relation is given by

p2-2mE=0

.

We can then define a 5-vector,

p\mu=(px,py,pz,m,E)=(pi,m,E)

,with

i=1,2,3

.

Thus, we can define a scalar product of the type

p\mup\nug\mu\nu=pipi-p5p4-p4p5=p2-2mE=k,

where

g\mu\nu=\pm\begin{pmatrix} 1&0&0&0&0\\ 0&1&0&0&0\\ 0&0&1&0&0\\ 0&0&0&0&-1\\ 0&0&0&-1&0 \end{pmatrix},

is the metric of the space-time, and

p\nug\mu\nu=p\mu

.

Extended Galilei algebra

A five dimensional Poincaré algebra leaves the metric

g\mu\nu

invariant,

\begin{align}[] [P\mu,P\nu]&=0,\\

1
i

~[M\mu\nu,P\rho]&=g\mu\rhoP\nu-g\nu\rhoP\mu,\\

1
i

~[M\mu\nu,M\rho\sigma]&=g\mu\rhoM\nu\sigma-g\mu\sigmaM\nu\rho-g\nu\rhoM\mu\sigma+η\nu\sigmaM\mu\rho, \end{align}

We can write the generators as

\begin{align} Ji&=

1
2

\epsilonijkMjk,\\ Ki&=M5i,\\ Ci&=M4i,\\ D&=M54. \end{align}

The non-vanishing commutation relations will then be rewritten as

\begin{align} \left[Ji,Jj\right]&=i\epsilonijkJk,\\ \left[Ji,Cj\right]&=i\epsilonijkCk,\\ \left[D,Ki\right]&=iKi,\\ \left[P4,D\right]&=iP4,\\ \left[Pi,Kj\right]&=i\deltaijP5,\\ \left[P4,Ki\right]&=iPi,\\ \left[P5,D\right]&=-iP5,\\[4pt] \left[Ji,Kj\right]&=i\epsilonijkKk,\\ \left[Ki,Cj\right]&=i\deltaijD+i\epsilonijkJk,\\ \left[Ci,D\right]&=iCi,\\ \left[Ji,Pj\right]&=i\epsilonijkPk,\\ \left[Pi,Cj\right]&=i\deltaijP4,\\ \left[P5,Ci\right]&=iPi. \end{align}

An important Lie subalgebra is

\begin{align}[] [P4,Pi]&=0\\[] [Pi,Pj]&=0\\[] [Ji,P4]&=0\\[] [Ki,Kj]&=0\\ \left[Ji,Jj\right]&=i\epsilonijkJk,\\ \left[Ji,Pj\right]&=i\epsilonijkPk,\\ \left[Ji,Kj\right]&=i\epsilonijkKk,\\ \left[P4,Ki\right]&=iPi,\\ \left[Pi,Kj\right]&=i\deltaijP5, \end{align}

P4

is the generator of time translations (Hamiltonian), Pi is the generator of spatial translations (momentum operator),

Ki

is the generator of Galilean boosts, and

Ji

stands for a generator of rotations (angular momentum operator). The generator

P5

is a Casimir invariant and
2-2P
P
4P

5

is an additional Casimir invariant. This algebra is isomorphic to the extended Galilean Algebra in (3+1) dimensions with

P5=-M

, The central charge, interpreted as mass, and

P4=-H

.

The third Casimir invariant is given by

W\mu5

\mu{}
W
5
, where

W\mu\nu=\epsilon\mu\alpha\beta\rho\nuP\alphaM\beta\rho

is a 5-dimensional analog of the Pauli–Lubanski pseudovector.

Bargmann structures

In 1985 Duval, Burdet and Kunzle showed that four-dimensional Newton–Cartan theory of gravitation can be reformulated as Kaluza–Klein reduction of five-dimensional Einstein gravity along a null-like direction. The metric used is the same as the Galilean metric but with all positive entries

g\mu\nu=\begin{pmatrix}1&0&0&0&0\\0&1&0&0&0\\0&0&1&0&0\\0&0&0&0&1\\0&0&0&1&0\end{pmatrix}.

This lifting is considered to be useful for non-relativistic holographic models.[8] Gravitational models in this framework have been shown to precisely calculate the Mercury precession.[9]

See also

Notes and References

  1. Takahashi. Yasushi. 1988. Towards the Many-Body Theory with the Galilei Invariance as a Guide: Part I. Fortschritte der Physik/Progress of Physics. 36. 1. 63–81. 10.1002/prop.2190360105. 1988ForPh..36...63T. 1521-3978.
  2. Takahashi. Yasushi. 1988. Towards the Many-Body Theory with the Galilei invariance as a Gluide Part II. Fortschritte der Physik/Progress of Physics. en. 36. 1. 83–96. 10.1002/prop.2190360106. 1988ForPh..36...83T. 1521-3978.
  3. Omote. M.. Kamefuchi. S.. Takahashi. Y.. Ohnuki. Y.. 1989. Galilean Covariance and the Schrödinger Equation. Fortschritte der Physik/Progress of Physics. de. 37. 12. 933–950. 10.1002/prop.2190371203. 1989ForPh..37..933O. 1521-3978.
  4. Santana. A. E.. Khanna. F. C.. Takahashi. Y.. 17091575. 1998-03-01. Galilei Covariance and (4,1)-de Sitter Space. Progress of Theoretical Physics. en. 99. 3. 327–336. 10.1143/PTP.99.327. hep-th/9812223. 1998PThPh..99..327S. 0033-068X.
  5. Duval. C.. Burdet. G.. Künzle. H. P.. Perrin. M.. 1985. Bargmann structures and Newton–Cartan theory. Physical Review D. 31. 8. 1841–1853. 1985PhRvD..31.1841D. 10.1103/PhysRevD.31.1841. 9955910.
  6. Pinski. G.. 1968-11-01. Galilean Tensor Calculus. Journal of Mathematical Physics. 9. 11. 1927–1930. 10.1063/1.1664527. 1968JMP.....9.1927P. 0022-2488.
  7. Book: Kapuścik, Edward.. On the relation between Galilean, Poincaré and Euclidean field equations. 1985. IFJ. 835885918.
  8. Goldberger. Walter D.. 118553009. 2009. AdS/CFT duality for non-relativistic field theory. Journal of High Energy Physics. 2009. 3. 069. 0806.2867. 2009JHEP...03..069G. 10.1088/1126-6708/2009/03/069.
  9. Ulhoa. Sérgio C.. Khanna. Faqir C.. Santana. Ademir E.. 119195397. 2009-11-20. Galilean covariance and the gravitational field. International Journal of Modern Physics A. 24. 28n29. 5287–5297. 10.1142/S0217751X09046333. 0902.2023. 2009IJMPA..24.5287U. 0217-751X.