Gagliardo–Nirenberg interpolation inequality explained
In mathematics, and in particular in mathematical analysis, the Gagliardo–Nirenberg interpolation inequality is a result in the theory of Sobolev spaces that relates the
-norms of different
weak derivatives of a function through an
interpolation inequality. The theorem is of particular importance in the framework of elliptic
partial differential equations and was originally formulated by
Emilio Gagliardo and
Louis Nirenberg in 1958. The Gagliardo-Nirenberg inequality has found numerous applications in the investigation of nonlinear partial differential equations, and has been generalized to fractional Sobolev spaces by
Haim Brezis and Petru Mironescu in the late 2010s.
History
The Gagliardo-Nirenberg inequality was originally proposed by Emilio Gagliardo and Louis Nirenberg in two independent contributions during the International Congress of Mathematicians held in Edinburgh from August 14, 1958 through August 21, 1958.[1] [2] In the following year, both authors improved their results and published them independently.[3] [4] [5] Nonetheless, a complete proof of the inequality went missing in the literature for a long time. Indeed, to some extent, both original works of Gagliardo and Nirenberg do not contain a full and rigorous argument proving the result. For example, Nirenberg firstly included the inequality in a collection of lectures given in Pisa from September 1 to September 10, 1958. The transcription of the lectures was later published in 1959, and the author explicitly states only the main steps of the proof. On the other hand, the proof of Gagliardo did not yield the result in full generality, i.e. for all possible values of the parameters appearing in the statement. A detailed proof in the whole Euclidean space was published in 2021.
From its original formulation, several mathematicians worked on proving and generalizing Gagliardo-Nirenberg type inequalities. The Italian mathematician Carlo Miranda developed a first generalization in 1963,[6] which was addressed and refined by Nirenberg later in 1966.[7] The investigation of Gagliardo-Nirenberg type inequalities continued in the following decades. For instance, a careful study on negative exponents has been carried out extending the work of Nirenberg in 2018,[8] while Brezis and Mironescu characterized in full generality the embeddings between Sobolev spaces extending the inequality to fractional orders.
Statement of the inequality
For any extended real (i.e. possibly infinite) positive quantity
and any integer
, let
denote the usual
spaces, while
denotes the
Sobolev space consisting of all real-valued functions in
such that all their weak derivatives up to order
are also in
. Both families of spaces are intended to be endowed with their standard norms, namely:
[9] where
stands for
essential supremum. Above, for the sake of convenience, the same notation is used for scalar, vector and tensor-valued Lebesgue and Sobolev spaces.
The original version of the theorem, for functions defined on the whole Euclidean space
, can be stated as follows.
Notice that the parameter
is determined uniquely by all the other ones and usually assumed to be finite. However, there are sharper formulations in which
is considered (but other values may be excluded, for example
).
Relevant corollaries of the Gagliardo-Nirenberg inequality
The Gagliardo-Nirenberg inequality generalizes a collection of well-known results in the field of functional analysis. Indeed, given a suitable choice of the seven parameters appearing in the statement of the theorem, one obtains several useful and recurring inequalities in the theory of partial differential equations:
- The Sobolev embedding theorem establishes the existence of continuous embeddings between Sobolev spaces with different orders of differentiation and/or integrability. It can be obtained from the Gagliardo-Nirenberg inequality setting
(so that the choice of
becomes irrelevant, and the same goes for the associated requirement
) and the remaining parameters in such a way that
and the other hypotheses are satisfied. The result reads then
for any
such that
. In particular, setting
and
yields that
, namely the
Sobolev conjugate exponent of
, and we have the embedding
Notice that, in the embedding above, we also implicitly assume that
and hence the first exceptional case does not apply.
- The Ladyzhenskaya inequality is a special case of the Gagliardo-Nirenberg inequality. Considering the most common cases, namely
and
, we have the former corresponding to the parameter choice
yielding
for any
The constant
is universal and can be proven to be
.
[10] In three space dimensions, a slightly different choice of parameters is needed, namely
yielding
for any
. Here, it holds
.
- The Nash inequality, which was published by John Nash in 1958, is yet another result generalized by the Gagliardo-Nirenberg inequality. Indeed, choosingone gets which is oftentimes recast asor its squared version.[11] [12]
Proof of the Gagliardo-Nirenberg inequality
A complete and detailed proof of the Gagliardo-Nirenberg inequality has been missing in literature for a long time since its first statements. Indeed, both original works of Gagliardo and Nirenberg lacked some details, or even presented only the main steps of the proof.[13]
The most delicate point concerns the limiting case . In order to avoid the two exceptional cases, we further assume that
is finite and that
, so in particular
. The core of the proof is based on two
proofs by induction.
Throughout the proof, given
and
, we shall assume that
. A double induction argument is applied to the couple of integers
, representing the orders of differentiation. The other parameters are constructed in such a way that they comply with the hypotheses of the theorem. As base case, we assume that the Gagliardo-Nirenberg inequality holds for
and
(hence
). Here, in order for the inequality to hold, the remaining parameters should satisfy
The first induction step goes as follows. Assume the Gagliardo-Nirenberg inequality holds for some
strictly greater than
and
(hence
). We are going to prove that it also holds for
and
(with
). To this end, the remaining parameters
necessarily satisfy
Fix them as such. Then, let
be such that
From the base case, we can infer that
Now, from the two relations between the parameters, through some algebraic manipulations we arrive at
therefore the inequality with
applied to
implies
The two inequalities imply the sought Gagliardo-Nirenberg inequality, namely
The second induction step is similar, but allows
to change. Assume the Gagliardo-Nirenberg inequality holds for some pair
with
(hence
). It is enough to prove that it also holds for
and
(with
). Again, fix the parameters
in such a way that
and let
be such that
The inequality with
and
applied to
entails
Since, by the first induction step, we can assume the Gagliardo-Nirenberg inequality holds with
and
, we get
The proof is completed by combining the two inequalities. In order to prove the base case, several technical lemmas are necessary, while the remaining values of
can be recovered by interpolation and a proof can be found, for instance, in the original work of Nirenberg.
The Gagliardo-Nirenberg inequality in bounded domains
In many problems coming from the theory of partial differential equations, one has to deal with functions whose domain is not the whole Euclidean space
, but rather some given bounded,
open and
connected set
In the following, we also assume that
has finite
Lebesgue measure and satisfies the
cone condition (among those are the widely used
Lipschitz domains). Both Gagliardo and Nirenberg found out that their theorem could be extended to this case adding a penalization term to the right hand side. Precisely,
The necessity of a different formulation with respect to the case
is rather straightforward to prove. Indeed, since
has finite Lebesgue measure, any affine function belongs to
for every
(including
). Of course, it holds much more: affine functions belong to
and all their derivatives of order greater than or equal to two are identically equal to zero in
. It can be easily seen that the Gagliardo-Nirenberg inequality for the case
fails to be true for any non constant affine function, since a contradiction is immediately achieved when
and
, and therefore cannot hold in general for integrable functions defined on bounded domains.
That being said, under slightly stronger assumptions, it is possible to recast the theorem in such a way that the penalization term is "absorbed" in the first term at right hand side. Indeed, if
u\inLq(\Omega)\capWm,r(\Omega)
, then one can choose
and get
This formulation has the advantage of recovering the structure of the theorem in the full Euclidean space, with the only caution that the Sobolev
seminorm is replaced by the full
-norm. For this reason, the Gagliardo-Nirenberg inequality in bounded domains is commonly stated in this way.
[14] Finally, observe that the first exceptional case appearing in the statement of the Gagliardo-Nirenberg inequality for the whole space is no longer relevant in bounded domains, since for finite measure sets we have that
Linfty(\Omega)\hookrightarrowL\rho(\Omega)
for any finite
Generalization to non-integer orders
The problem of interpolating different Sobolev spaces has been solved in full generality by Haïm Brezis and Petru Mironescu in two works dated 2018 and 2019.[15] [16] Furthermore, their results do not depend on the dimension
and allow real values of
and
, rather than integer. Here,
is either the full space, a half-space or a bounded and Lipschitz domain. If
and
is an extended real quantity, the space
is defined as follows
and if
we set
where
and
denote the
integer part and the
fractional part of
, respectively, i.e.
.
[17] In this definition, there is the understanding that
, so that the usual Sobolev spaces are recovered whenever
is a positive integer. These spaces are often referred to as fractional Sobolev spaces. A generalization of the Gagliardo-Nirenberg inequality to these spaces readsFor example, the parameter choice
gives the estimate
The validity of the estimate is granted, for instance, from the fact that
.
See also
References
- Gagliardo . Emilio . August 14–21, 1958 . Propriétés de certaines classes de fonctions de
variables. . International Congress of Mathematicians . fr . Edinburgh . xxiv.
- Nirenberg . Louis . August 14–21, 1958 . Inequalities for derivatives. . International Congress of Mathematicians . en-us . Edinburgh . xxvii.
- Gagliardo . Emilio . 1958 . Proprietà di alcune classi di funzioni in più variabili . Ricerche di Matematica . 7 . 1 . 102–137 . it.
- Gagliardo . Emilio . 1959 . Ulteriori proprietà di alcune classi di funzioni di più variabili . Ricerche di Matematica . 8 . 24–51 . it.
- Nirenberg . Louis . 1959 . On elliptic partial differential equations . Annali della Scuola Normale Superiore di Pisa . 3 . 13 . 115–162 . en-us.
- Miranda . Carlo . 1963 . Su alcune disuguaglianze integrali . Atti dell'Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali . it . 8 . 7 . 1–14.
- Nirenberg . Louis . 1966 . On an extended interpolation inequality . Annali della Scuola Normale Superiore di Pisa . 3 . 20 . 733–737.
- Soudský . Filip . Molchanova . Anastasia . Roskovec . Tomáš . 2018 . Interpolation between Hölder and Lebesgue spaces with applications . Journal of Mathematical Analysis and Applications . en . 466 . 1 . 160–168 . 10.1016/j.jmaa.2018.05.067. 1801.06865 . 119577652 . free .
- Book: Brezis, Haim . Functional Analysis, Sobolev Spaces and Partial Differential Equations . Springer . 2011 . New York . en . 10.1007/978-0-387-70914-7. 978-0-387-70913-0 .
- Book: Galdi, Giovanni Paolo . An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems . Springer Monographs in Mathematics . Springer . 2011 . 2nd . 55. 10.1007/978-0-387-09620-9 . 978-0-387-09619-3 .
- Nash . John . 1958 . Continuity of solutions of parabolic and elliptic equations . American Journal of Mathematics . 80 . 4 . 931–954. 10.2307/2372841 . 2372841 . 1958AmJM...80..931N .
- Bouin . Emeric . Dolbeault . Jean . Schmeiser . Christian . 2020 . A variational proof of Nash's inequality . Atti dell'Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. . 31 . 1 . 211–223 . 10.4171/RLM/886. 119668382 .
- Fiorenza . Alberto . Formica . Maria Rosaria . Roskovec . Tomáš . Soudský . Filip . 2021 . Detailed Proof of Classical Gagliardo–Nirenberg Interpolation Inequality with Historical Remarks . Zeitschrift für Analysis und ihre Anwendungen . en . 40 . 2 . 217–236 . 10.4171/ZAA/1681 . 1812.04281 . 119708752 . 0232-2064.
- Book: Brezis, Haim . Functional Analysis, Sobolev Spaces and Partial Differential Equations . Springer . 2011 . New York . 233 . en . 10.1007/978-0-387-70914-7. 978-0-387-70913-0 .
- Brezis . Haïm . Mironescu . Petru . 2018 . Gagliardo–Nirenberg inequalities and non-inequalities: The full story . Annales de l'Institut Henri Poincaré C . en . 35 . 5 . 1355–1376 . 10.1016/j.anihpc.2017.11.007 . 2018AIHPC..35.1355B . 58891735 . 0294-1449. free .
- Brezis . Haïm . Mironescu . Petru . 2019-10-15 . Where Sobolev interacts with Gagliardo–Nirenberg . Journal of Functional Analysis . en . 277 . 8 . 2839–2864 . 10.1016/j.jfa.2019.02.019 . 128179938 . 0022-1236. free .
- Di Nezza . Eleonora . Palatucci . Giampiero . Valdinoci . Enrico . 2012 . Hitchhikerʼs guide to the fractional Sobolev spaces . Bulletin des Sciences Mathématiques . en . 136 . 5 . 524 . 10.1016/j.bulsci.2011.12.004 . 1104.4345 . 55443959 . 0007-4497. free .