Satellite navigation solution explained

Satellite navigation solution for the receiver's position (geopositioning) involves an algorithm. In essence, a GNSS receiver measures the transmitting time of GNSS signals emitted from four or more GNSS satellites (giving the pseudorange) and these measurements are used to obtain its position (i.e., spatial coordinates) and reception time.

The following are expressed in inertial-frame coordinates.

Calculation steps

  1. A global-navigation-satellite-system (GNSS) receiver measures the apparent transmitting time,

\displaystyle\tilde{t}i

, or "phase", of GNSS signals emitted from four or more GNSS satellites (

\displaystylei = 1,2,3,4,..,n

), simultaneously.[1]
  1. GNSS satellites broadcast the messages of satellites' ephemeris,

\displaystyle\boldsymbol{r}i(t)

, and intrinsic clock bias (i.e., clock advance),

\displaystyle\deltatclock,sv,i(t)

as the functions of (atomic) standard time, e.g., GPST.[2]
  1. The transmitting time of GNSS satellite signals,

\displaystyleti

, is thus derived from the non-closed-form equations

\displaystyle\tilde{t}i = ti+\deltatclock,i(ti)

and

\displaystyle\deltatclock,i(ti) = \deltatclock,sv,i(ti)+\deltatorbit-relativ,(\boldsymbol{r}i,

\boldsymbol{r
}_i), where

\displaystyle\deltatorbit-relativ,i(\boldsymbol{r}i,

\boldsymbol{r
}_i) is the relativistic clock bias, periodically risen from the satellite's orbital eccentricity and Earth's gravity field.[2] The satellite's position and velocity are determined by

\displaystyleti

as follows:

\displaystyle\boldsymbol{r}i = \boldsymbol{r}i(ti)

and

\displaystyle

\boldsymbol{r
}_i \;=\; \dot_i (t_i).
  1. In the field of GNSS, "geometric range",

\displaystyler(\boldsymbol{r}A,\boldsymbol{r}B)

, is defined as straight range, or 3-dimensional distance,[3] from

\displaystyle\boldsymbol{r}A

to

\displaystyle\boldsymbol{r}B

in inertial frame (e.g., ECI one), not in rotating frame.[2]
  1. The receiver's position,

\displaystyle\boldsymbol{r}rec

, and reception time,

\displaystyletrec

, satisfy the light-cone equation of

\displaystyler(\boldsymbol{r}i,\boldsymbol{r}rec)/c+(ti-trec) = 0

in inertial frame, where

\displaystylec

is the speed of light. The signal time of flight from satellite to receiver is

\displaystyle-(ti-trec)

.
  1. The above is extended to the satellite-navigation positioning equation,

\displaystyler(\boldsymbol{r}i,\boldsymbol{r}rec)/c+(ti-trec)+\deltatatmos,i-\deltatmeas-err,i = 0

, where

\displaystyle\deltatatmos,i

is atmospheric delay (= ionospheric delay + tropospheric delay) along signal path and

\displaystyle\deltatmeas-err,i

is the measurement error.
  1. The Gauss–Newton method can be used to solve the nonlinear least-squares problem for the solution:

\displaystyle(\hat{\boldsymbol{r}}rec,\hat{t}rec) = \argmin\phi(\boldsymbol{r}rec,trec)

, where

\displaystyle\phi(\boldsymbol{r}rec,trec) = 

n
\sum
i=1

(\deltatmeas-err,i/

\sigma
\deltatmeas-err,i

)2

. Note that

\displaystyle\deltatmeas-err,i

should be regarded as a function of

\displaystyle\boldsymbol{r}rec

and

\displaystyletrec

.
  1. The posterior distribution of

\displaystyle\boldsymbol{r}rec

and

\displaystyletrec

is proportional to

\displaystyle\exp(-

1
2

\phi(\boldsymbol{r}rec,trec))

, whose mode is

\displaystyle(\hat{\boldsymbol{r}}rec,\hat{t}rec)

. Their inference is formalized as maximum a posteriori estimation.
  1. The posterior distribution of

\displaystyle\boldsymbol{r}rec

is proportional to

\displaystyle

infty
\int
-infty

\exp(-

1
2

\phi(\boldsymbol{r}rec,trec))dtrec

.

The GPS case

\scriptstyle\begin{cases} \scriptstyle\Deltati(ti,Ei)\triangleqti+\deltatclock,i(ti,Ei)-\tilde{t}i = 0,\\ \scriptstyle\DeltaMi(ti,Ei)\triangleqMi(ti)-(Ei-ei\sinEi) = 0,\end{cases}

in which

\scriptstyleEi

is the orbital eccentric anomaly of satellite

i

,

\scriptstyleMi

is the mean anomaly,

\scriptstyleei

is the eccentricity, and

\scriptstyle\deltatclock,i(ti,Ei) = \deltatclock,sv,i(ti)+\deltatorbit-relativ,i(Ei)

.

\scriptstyleti

and

\scriptstyleEi

. Two times of iteration will be necessary and sufficient in most cases. Its iterative update will be described by using the approximated inverse of Jacobian matrix as follows:

\scriptstyle \begin{pmatrix} ti\\ Ei\\ \end{pmatrix} \leftarrow\begin{pmatrix} ti\\ Ei\\ \end{pmatrix} -\begin{pmatrix} 1&&0\\

Mi(ti)
1-ei\cosEi

&&-

1
1-ei\cosEi

\\ \end{pmatrix} \begin{pmatrix} \Deltati\\ \DeltaMi\\ \end{pmatrix}

The GLONASS case

\scriptstyle\deltatclock,sv,i(t)

, but

\scriptstyle\deltatclock,i(t)

.

See also

Notes

\scriptstyle\tilde{r}i = -c(\tilde{t}i-\tilde{t}rec)

is called pseudorange, where

\scriptstyle\tilde{t}rec

is a provisional reception time of the receiver.

\scriptstyle\deltatclock,rec = \tilde{t}rec-trec

is called receiver's clock bias (i.e., clock advance).[1]

\scriptstyle\tilde{r}i

and

\scriptstyle\tilde{t}rec

per an observation epoch.

\scriptstyle-(ti-trec) = \tilde{r}i/c+\deltatclock,i-\deltatclock,rec

, whose right side is round-off-error resistive during calculation.

\scriptstyler(\boldsymbol{r}i,\boldsymbol{r}rec) = |\OmegaE(ti-trec)\boldsymbol{r}i,ECEF-\boldsymbol{r}rec,ECEF|

, where the Earth-centred, Earth-fixed (ECEF) rotating frame (e.g., WGS84 or ITRF) is used in the right side and

\scriptstyle\OmegaE

is the Earth rotating matrix with the argument of the signal transit time.[2] The matrix can be factorized as

\scriptstyle\OmegaE(ti-trec) = \OmegaE(\deltatclock,rec)\OmegaE(-\tilde{r}i/c-\deltatclock,i)

.

\scriptstyle\boldsymbol{r}rec,ECEF

is described as:

\scriptstyle\boldsymbol{e}i, = -

\partialr(\boldsymbol{r
i,

\boldsymbol{r}rec)}{\partial\boldsymbol{r}rec,ECEF

} .

\scriptstyle\boldsymbol{r}rec,ECEF

and

\scriptstyle\deltatclock,rec

.

See also

References

  1. Misra, P. and Enge, P., Global Positioning System: Signals, Measurements, and Performance, 2nd, Ganga-Jamuna Press, 2006.
  2. http://www.navcen.uscg.gov/pdf/IS-GPS-200D.pdf The interface specification of NAVSTAR GLOBAL POSITIONING SYSTEM
  3. 3-dimensional distance is given by

    \displaystyler(\boldsymbol{r}A,\boldsymbol{r}B)=|\boldsymbol{r}A-\boldsymbol{r}B|=\sqrt{(xA-x

    2+(y
    A-y
    2+(z
    A-z
    2}
    B)
    where

    \displaystyle\boldsymbol{r}A=(xA,yA,zA)

    and

    \displaystyle\boldsymbol{r}B=(xB,yB,zB)

    represented in inertial frame.

External links