In theoretical computer science and metric geometry, the GNRS conjecture connects the theory of graph minors, the stretch factor of embeddings, and the approximation ratio of multi-commodity flow problems. It is named after Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair, who formulated it in 2004.
One formulation of the conjecture involves embeddings of the shortest path distances of weighted undirected graphs into \ell1
d
[cd,Cd]
C/c
The graphs that have an embedding with at most a given distortion are closed under graph minor operations, operations that delete vertices or edges from a graph or contract some of its edges. The GNRS conjecture states that, conversely, every minor-closed family of graphs, other than the family of all graphs, can be embedded into an
\ell1
An alternative formulation involves analogues of the max-flow min-cut theorem for undirected multi-commodity flow problems. The ratio of the maximum flow to the minimum cut, in such problems, is known as the flow-cut gap. The largest flow-cut gap that a flow problem can have on a given graph equals the distortion of the optimal
\ell1
Arbitrary
n
n
\ell1
O(logn)
O(\sqrt{logn})
Although the GNRS conjecture remains unsolved, it has been proven for some minor-closed graph families that bounded-distortion embeddings exist. These include the series–parallel graphs and the graphs of bounded circuit rank, the graphs of bounded pathwidth, the 2-clique-sums of graphs of bounded size, and the k
In contrast to the behavior of metric embeddings into
\ell1
\ell2
\ellinfty
\ell1