G2-structure explained
In differential geometry, a
-structure
is an important type of G-structure that can be defined on a smooth manifold. If M is a smooth manifold of dimension seven, then a G2-structure is a reduction of structure group of the frame bundle of M to the compact, exceptional Lie group G2.Equivalent conditions
The existence of a
structure on a 7-manifold
is equivalent to either of the following conditions:
It follows that the existence of a
-structure is much weaker than the existence of a metric of holonomy
, because a compact 7-manifold of holonomy
must also have finite fundamental group and non-vanishing first
Pontrjagin class.
History
The fact that there might be certain Riemannian 7-manifolds manifolds of holonomy
was first suggested by
Marcel Berger's 1955 classification of possible Riemannian holonomy groups. Although thil working in a complete absence of examples,
Edmond Bonan then forged ahead in 1966, and investigated the properties that a manifold of holonomy
would necessarily have; in particular, he showed that such a manifold would carry a parallel 3-form and a parallel 4-form, and that the manifold would necessarily be Ricci-flat.
[1] However, it remained unclear whether such metrics actually existed until
Robert Bryant proved a local existence theorem for such metrics in 1984. The first complete (although non-compact) 7-manifolds with holonomy
were constructed by Bryant and Simon Salamon in 1989.
[2] The first compact 7-manifolds with holonomy
were constructed by
Dominic Joyce in 1994, and compact
manifolds are sometimes known as "Joyce manifolds", especially in the physics literature.
[3] In 2013, it was shown by M. Firat Arikan, Hyunjoo Cho, and Sema Salur that any manifold with a
spin structure, and, hence, a
-structure, admits a compatible almost contact metric structure, and an explicit compatible almost contact structure was constructed for manifolds with
-structure.
[4] In the same paper, it was shown that certain classes of
-manifolds admit a contact structure.
Remarks
The property of being a
-manifold is much stronger than that of admitting a
-structure. Indeed, being a
-manifold is equivalent to admitting a
-structure that is torsion-free.
The letter "G" occurring in the phrases "G-structure" and "
-structure" refers to different things. In the first case, G-structures take their name from the fact that arbitrary Lie groups are typically denoted with the letter "G". On the other hand, the letter "G" in "
" comes from the fact that its Lie algebra is the seventh type ("G" being the seventh letter of the alphabet) in the classification of complex simple Lie algebras by
Élie Cartan.
See also
Notes
- .
- .
- .
- .
References