In mathematics, a fusion frame of a vector space is a natural extension of a frame. It is an additive construct of several, potentially "overlapping" frames. The motivation for this concept comes from the event that a signal can not be acquired by a single sensor alone (a constraint found by limitations of hardware or data throughput), rather the partial components of the signal must be collected via a network of sensors, and the partial signal representations are then fused into the complete signal.
By construction, fusion frames easily lend themselves to parallel or distributed processing[1] of sensor networks consisting of arbitrary overlapping sensor fields.
l{H}
\{Wi\}i
l{H}
l{I}
\{vi\}i
\{Wi,vi\}i
l{H}
0<A\leqB<infty
2\leq\sum | |
A\|f\| | |
i\inl{I |
P | |
Wi |
Wi
A
B
\{Wi,vi\}i
A
A=B=1
\{Wi,vi\}i
Assume
\{fij\}i,j\inJi}
Wi
\{\left(Wi,vi,\{fij
\} | |
j\inJi |
\right)\}i
l{H}
Let
\{Wi\}i\inl{H
l{H}
\{vi\}i
\{fij\}i,j\inJi}
Wi
Ci
Di
0<C\leqD<infty
\{Wi,vi\}i
l{H}
\{vifij\}i,j\inJi}
l{H}
Additionally, if
\{\left(Wi,vi,\{fij
\} | |
j\inJi |
\right)\}i
l{H}
A
B
\{vifij\}i,j\inJi}
l{H}
AC
BD
\{vifij\}i,j\inJi}
l{H}
E
F
\{\left(Wi,vi,\{fij
\} | |
j\inJi |
\right)\}i
l{H}
E/D
F/C
Let
W\subsetl{H}
\{xn\}
W
f\inl{H}
W
PWf=\sum\langlef,xn\ranglexn.
f
W
\{fk\}
W
PWf=\sum\langlef,fk\rangle\tilde{f}k,
where
\{\tilde{f}k\}
\{fk\}
Let
\{Wi,vi\}i
l{H}
\{\sumoplusWi\}
l2 |
TW:l{H} → \{\sumoplusWi\}
l2 |
TW\left(f\right)=\{viP
Wi |
\left(f\right)\}i\inl{I
The adjoint is called the synthesis operator
\ast | |
T | |
W: |
\{\sumoplusWi\}
l2 |
→ l{H}
\ast | |
T | |
W\left(g |
\right)=\sumvifi,
g=\{fi\}i\inl{I
The fusion frame operator
SW:l{H} → l{H}
SW\left(f
\ast | |
\right)=T | |
WT |
W\left(f\right)=\sum
2 | |
v | |
iP |
Wi |
\left(f\right).
Given the lower and upper bounds of the fusion frame
\{Wi,vi\}i
A
B
SW
AI\leqSW\leqBI,
I
SW
Given a fusion frame system
\{\left(Wi,vi,l{F}i\right)\}i
l{H}
l{F}i=\{fij
\} | |
j\inJi |
\tilde{l{F}}i=\{\tilde{f}ij
\} | |
j\inJi |
l{F}i
SW
SW=\sum
\ast | |
v | |
\tilde{l{F |
where
Tl{Fi}
T\tilde{l{F
l{F}i
\tilde{l{F}}i
\ast | |
T | |
l{F |
i}
\ast | |
T | |
\tilde{l{F |
l{F}i
\tilde{l{F}}i
For finite frames (i.e.,
\dimlH=:N<infty
|lI|<infty
\{Wi,vi\}i
l{H}N
\{fij\}ji}
Wi
Ji
i\inl{I}
S:l{H}\tol{H}
N x N
S=\sumi\inl{I
Fi=\begin{bmatrix}\vdots&\vdots&&\vdots\ fi1&fi2& … &
f | |
i|Ji| |
\ \vdots&\vdots&&\vdots
\\\end{bmatrix} | |
N x |Ji| |
,
\tilde{F}i=\begin{bmatrix}\vdots&\vdots&&\vdots\ \tilde{f}i1&\tilde{f}i2& … &
\tilde{f} | |
i|Ji| |
\ \vdots&\vdots&&\vdots
\\\end{bmatrix} | |
N x |Ji| |
,
where
\tilde{f}ij
fij