In physics, Fujikawa's method is a way of deriving the chiral anomaly in quantum field theory. It uses the correspondence between functional determinants and the partition function, effectively making use of the Atiyah–Singer index theorem.
\psi
\rho
ak{g}.
D/ \stackrel{def
\intddx\overline{\psi}iD/\psi
Z[A]=\int
-\intddx\overline{\psi | |
l{D}\overline{\psi}l{D}\psie |
iD/\psi}.
The axial symmetry transformation goes as
\psi\to
i\gammad+1\alpha(x) | |
e |
\psi
\overline{\psi}\to
i\gammad+1\alpha(x) | |
\overline{\psi}e |
S\toS+\intddx
\mu\gamma | |
\alpha(x)\partial | |
d+1 |
\psi\right)
\mu | |
j | |
d+1 |
\equiv
\mu\gamma | |
\overline{\psi}\gamma | |
d+1 |
\psi
0=\partial\mu
\mu | |
j | |
d+1 |
Quantum mechanically, the chiral current is not conserved: Jackiw discovered this due to the non-vanishing of a triangle diagram. Fujikawa reinterpreted this as a change in the partition function measure under a chiral transformation. To calculate a change in the measure under a chiral transformation, first consider the Dirac fermions in a basis of eigenvectors of the Dirac operator:
\psi=\sum\limitsi
i, | |
\psi | |
ia |
\overline\psi=\sum\limitsi
i, | |
\psi | |
ib |
\{ai,bi\}
\{\psii\}
D/\psii=-λi\psii.
j | |
\delta | |
i |
=\int
ddx | |
(2\pi)d |
\psi\dagger(x)\psii(x).
l{D}\psil{D}\overline{\psi}=\prod\limitsidaidbi
Under an infinitesimal chiral transformation, write
\psi\to\psi\prime=(1+i\alpha\gammad+1)\psi=\sum\limitsi
\primei | |
\psi | |
ia |
,
\overline\psi\to\overline{\psi}\prime=\overline{\psi}(1+i\alpha\gammad+1)=\sum\limitsi
\primei | |
\psi | |
ib |
.
i | |
C | |
j |
\equiv\left(
\deltaa | |
\deltaa\prime |
i | |
\right) | |
j |
=\intddx\psi\dagger(x)[1-i\alpha(x)\gammad+1]\psij(x)=
i | |
\delta | |
j |
-i\intddx\alpha(x)\psi\dagger(x)\gammad+1\psij(x).
\{bi\}
l{D}\psil{D}\overline{\psi}=\prod\limitsidaidbi=\prod\limitsida\primedb\prime{\det}-2
i | |
(C | |
j), |
\begin{align}{\det}-2
i | |
(C | |
j) |
&=\exp\left[-2{\rm
i | |
tr}ln(\delta | |
j-i\int |
ddx\alpha(x)\psi\dagger(x)\gammad+1\psij(x))\right]\\ &=\exp\left[2i\intddx\alpha(x)\psi\dagger(x)\gammad+1\psii(x)\right]\end{align}
Specialising to the case where α is a constant, the Jacobian must be regularised because the integral is ill-defined as written. Fujikawa employed heat-kernel regularization, such that
\begin{align}-2{\rmtr}ln
i | |
C | |
j |
&=2i\lim\limitsM\toinfty\alpha\intddx\psi\dagger(x)\gammad+1
| ||||||||||
e |
\psii(x)\\ &=2i\lim\limitsM\toinfty\alpha\intddx\psi\dagger(x)\gammad+1e{D/2/M
2}\psi | |
i(x)\end{align} |
{D/}2
D2+\tfrac{1}{4}[\gamma\mu,\gamma
\nu]F | |
\mu\nu |
=2i\lim\limitsM\toinfty\alpha\int
| |||||
d | \int |
ddk\prime | |
(2\pi)d |
\psi\dagger(k\prime)e
ik\primex | |
\gammad+1
| |||||||||||||
e |
e-ikx\psii(k)
=-
-2\alpha | |||||||||
|
(F)d/2,
after applying the completeness relation for the eigenvectors, performing the trace over γ-matrices, and taking the limit in M. The result is expressed in terms of the field strength 2-form,
F\equiv\tfrac{1}{2}F\mu\nudx\mu\wedgedx\nu.
This result is equivalent to
(\tfrac{d}{2})\rm
ak{g}