In mathematics, Frullani integrals are a specific type of improper integral named after the Italian mathematician Giuliano Frullani. The integrals are of the form
\int
infty | ||
{ | ||
0 |
f(ax)-f(bx) | |
x |
f
infty
f(infty)
The following formula for their general solution holds if
f
(0,infty)
infty
a,b>0
\int
infty | ||
{ | ||
0 |
f(ax)-f(bx) | |
x |
A simple proof of the formula (under stronger assumptions than those stated above, namely
f\inl{C}1(0,infty)
f'(xt)=
\partial | \left( | |
\partialt |
f(xt) | |
x |
\right)
\begin{align}
f(ax)-f(bx) | |
x |
&=\left[
f(xt) | |
x |
t=a | |
\right] | |
t=b |
\\ &=
a | |
\int | |
b |
f'(xt)dt\\ \end{align}
and then use Tonelli’s theorem to interchange the two integrals:
\begin{align}
infty | |
\int | |
0 |
f(ax)-f(bx) | |
x |
dx&=
infty | |
\int | |
0 |
a | |
\int | |
b |
f'(xt)dtdx\\ &=
a | |
\int | |
b |
infty | |
\int | |
0 |
f'(xt)dxdt\\ &=
a | ||
\int | \left[ | |
b |
f(xt) | |
t |
x\toinfty | |
\right] | |
x=0 |
dt\\ &=
a | |
\int | |
b |
f(infty)-f(0) | |
t |
dt\\ &=(f(infty)-f(0))(ln(a)-ln(b))\\ &=(f(infty)-f(0))ln(
a | |
b |
)\\ \end{align}
[b,a]
[a,b]
ln(x)
f(x)=e-x
a=1
{\int
infty | ||
{ | ||
0 |
e-x-e-bx | |
x |
The formula can also be generalized in several different ways.[1]