In matrix theory, the Frobenius covariants of a square matrix are special polynomials of it, namely projection matrices Ai associated with the eigenvalues and eigenvectors of .[1] They are named after the mathematician Ferdinand Frobenius.
Each covariant is a projection on the eigenspace associated with the eigenvalue .Frobenius covariants are the coefficients of Sylvester's formula, which expresses a function of a matrix as a matrix polynomial, namely a linear combination of that function's values on the eigenvalues of .
Let be a diagonalizable matrix with eigenvalues λ1, ..., λk.
The Frobenius covariant, for i = 1,..., k, is the matrix
Ai\equiv
k | |
\prod | |
j=1\atopj\nei |
1 | |
λi-λj |
(A-λjI)~.
See also: Resolvent formalism.
The Frobenius covariants of a matrix can be obtained from any eigendecomposition, where is non-singular and is diagonal with . If has no multiple eigenvalues, then let ci be the th right eigenvector of, that is, the th column of ; and let ri be the th left eigenvector of, namely the th row of −1. Then .
If has an eigenvalue λi appearing multiple times, then, where the sum is over all rows and columns associated with the eigenvalue λi.[1]
Consider the two-by-two matrix:
A=\begin{bmatrix}1&3\ 4&2\end{bmatrix}.
The corresponding eigen decomposition is
A=\begin{bmatrix}3&1/7\ 4&-1/7\end{bmatrix}\begin{bmatrix}5&0\ 0&-2\end{bmatrix}\begin{bmatrix}3&1/7\ 4&-1/7\end{bmatrix}-1=\begin{bmatrix}3&1/7\ 4&-1/7\end{bmatrix}\begin{bmatrix}5&0\ 0&-2\end{bmatrix}\begin{bmatrix}1/7&1/7\ 4&-3\end{bmatrix}.
\begin{array}{rl} A1&=c1r1=\begin{bmatrix}3\ 4\end{bmatrix}\begin{bmatrix}1/7&1/7\end{bmatrix}=\begin{bmatrix}3/7&3/7\ 4/7&4/7\end{bmatrix}=
2\\ A | |
A | |
2 |
&=c2r2=\begin{bmatrix}1/7\ -1/7\end{bmatrix}\begin{bmatrix}4&-3\end{bmatrix}=\begin{bmatrix}4/7&-3/7\ -4/7&3/7
2 | |
\end{bmatrix}=A | |
2 |
~, \end{array}
A1A2=0, A1+A2=I~.