Friedel's law explained
Friedel's law, named after Georges Friedel, is a property of Fourier transforms of real functions.[1]
Given a real function
, its
Fourier transform
has the following properties.
where
is the complex conjugate of
.
Centrosymmetric points
are called
Friedel's pairs.
The squared amplitude (
) is centrosymmetric:
The phase
of
is
antisymmetric:
.
Friedel's law is used in X-ray diffraction, crystallography and scattering from real potential within the Born approximation. Note that a twin operation (Opération de maclage) is equivalent to an inversion centre and the intensities from the individuals are equivalent under Friedel's law.[2] [3] [4]
Notes and References
- Friedel G . Sur les symétries cristallines que peut révéler la diffraction des rayons Röntgen . Comptes Rendus. 157 . 1533–1536 . 1913.
- Nespolo M, Giovanni Ferraris G . Applied geminography - symmetry analysis of twinned crystals and definition of twinning by reticular polyholohedry . Acta Crystallogr A . 60 . 1 . 89–95 . 2004 . 10.1107/S0108767303025625.
- Friedel G (1904). "Étude sur les groupements cristallins". Extract from Bullettin de la Société de l'Industrie Minérale, Quatrième série, Tomes III et IV. Saint-Étienne: Societè de l'Imprimerie Thèolier J. Thomas et C.
- Friedel G. (1923). Bull. Soc. Fr. Minéral. 46:79-95.