Friedel's law explained

Friedel's law, named after Georges Friedel, is a property of Fourier transforms of real functions.[1]

Given a real function

f(x)

, its Fourier transform
+infty
F(k)=\int
-infty

f(x)eidx

has the following properties.

F(k)=F*(-k)

where

F*

is the complex conjugate of

F

.

Centrosymmetric points

(k,-k)

are called Friedel's pairs.

The squared amplitude (

|F|2

) is centrosymmetric:

|F(k)|2=|F(-k)|2

The phase

\phi

of

F

is antisymmetric:

\phi(k)=-\phi(-k)

.

Friedel's law is used in X-ray diffraction, crystallography and scattering from real potential within the Born approximation. Note that a twin operation (Opération de maclage) is equivalent to an inversion centre and the intensities from the individuals are equivalent under Friedel's law.[2] [3] [4]

Notes and References

  1. Friedel G . Sur les symétries cristallines que peut révéler la diffraction des rayons Röntgen . Comptes Rendus. 157 . 1533–1536 . 1913.
  2. Nespolo M, Giovanni Ferraris G . Applied geminography - symmetry analysis of twinned crystals and definition of twinning by reticular polyholohedry . Acta Crystallogr A . 60 . 1 . 89–95 . 2004 . 10.1107/S0108767303025625.
  3. Friedel G (1904). "Étude sur les groupements cristallins". Extract from Bullettin de la Société de l'Industrie Minérale, Quatrième série, Tomes III et IV. Saint-Étienne: Societè de l'Imprimerie Thèolier J. Thomas et C.
  4. Friedel G. (1923). Bull. Soc. Fr. Minéral. 46:79-95.