Frequent pattern discovery (or FP discovery, FP mining, or Frequent itemset mining) is part of knowledge discovery in databases, Massive Online Analysis, and data mining; it describes the task of finding the most frequent and relevant patterns in large datasets.[1] The concept was first introduced for mining transaction databases.Frequent patterns are defined as subsets (itemsets, subsequences, or substructures) that appear in a data set with frequency no less than a user-specified or auto-determined threshold.[2] [3]
Techniques for FP mining include:
For the most part, FP discovery can be done using association rule learning with particular algorithms Eclat, FP-growth and the Apriori algorithm.
Other strategies include:
and respective specific techniques.
Implementations exist for various machine learning systems or modules like MLlib for Apache Spark.[5]