Free convolution explained
Free convolution is the free probability analog of the classical notion of convolution of probability measures. Due to the non-commutative nature of free probability theory, one has to talk separately about additive and multiplicative free convolution, which arise from addition and multiplication of free random variables (see below; in the classical case, what would be the analog of free multiplicative convolution can be reduced to additive convolution by passing to logarithms of random variables). These operations have some interpretations in terms of empirical spectral measures of random matrices.[1]
The notion of free convolution was introduced by Dan-Virgil Voiculescu.[2] [3]
Free additive convolution
Let
and
be two probability measures on the real line, and assume that
is a random variable in a non commutative probability space with law
and
is a random variable in the same non commutative probability space with law
. Assume finally that
and
are
freely independent. Then the
free additive convolution
is the law of
.
Random matrices interpretation: if
and
are some independent
by
Hermitian (resp. real symmetric) random matrices such that at least one of them is invariant, in law, under conjugation by any unitary (resp. orthogonal) matrix and such that the
empirical spectral measures of
and
tend respectively to
and
as
tends to infinity, then the empirical spectral measure of
tends to
.
[4] In many cases, it is possible to compute the probability measure
explicitly by using complex-analytic techniques and the R-transform of the measures
and
.
Rectangular free additive convolution
The rectangular free additive convolution (with ratio
)
has also been defined in the non commutative probability framework by Benaych-Georges
[5] and admits the following
random matrices interpretation. For
, for
and
are some independent
by
complex (resp. real) random matrices such that at least one of them is invariant, in law, under multiplication on the left and on the right by any unitary (resp. orthogonal) matrix and such that the
empirical singular values distribution of
and
tend respectively to
and
as
and
tend to infinity in such a way that
tends to
, then the
empirical singular values distribution of
tends to
.
[6] In many cases, it is possible to compute the probability measure
explicitly by using complex-analytic techniques and the rectangular R-transform with ratio
of the measures
and
.
Free multiplicative convolution
Let
and
be two probability measures on the interval
, and assume that
is a random variable in a non commutative probability space with law
and
is a random variable in the same non commutative probability space with law
. Assume finally that
and
are
freely independent. Then the
free multiplicative convolution
is the law of
(or, equivalently, the law of
.
Random matrices interpretation: if
and
are some independent
by
non negative Hermitian (resp. real symmetric) random matrices such that at least one of them is invariant, in law, under conjugation by any unitary (resp. orthogonal) matrix and such that the
empirical spectral measures of
and
tend respectively to
and
as
tends to infinity, then the empirical spectral measure of
tends to
.
[7] A similar definition can be made in the case of laws
supported on the unit circle
, with an orthogonal or unitary
random matrices interpretation.
Explicit computations of multiplicative free convolution can be carried out using complex-analytic techniques and the S-transform.
Applications of free convolution
- Free convolution can be used to give a proof of the free central limit theorem.
- Free convolution can be used to compute the laws and spectra of sums or products of random variables which are free. Such examples include: random walk operators on free groups (Kesten measures); and asymptotic distribution of eigenvalues of sums or products of independent random matrices.
Through its applications to random matrices, free convolution has some strong connections with other works on G-estimation of Girko.
The applications in wireless communications, finance and biology have provided a useful framework when the number of observations is of the same order as the dimensions of the system.
See also
References
- "Free Deconvolution for Signal Processing Applications", O. Ryan and M. Debbah, ISIT 2007, pp. 1846–1850
- James A. Mingo, Roland Speicher: [//www.springer.com/us/book/9781493969418 Free Probability and Random Matrices]. Fields Institute Monographs, Vol. 35, Springer, New York, 2017.
- D.-V. Voiculescu, N. Stammeier, M. Weber (eds.): Free Probability and Operator Algebras, Münster Lectures in Mathematics, EMS, 2016
External links
Notes and References
- Anderson, G.W.; Guionnet, A.; Zeitouni, O. (2010). An introduction to random matrices. Cambridge: Cambridge University Press. .
- Voiculescu, D., Addition of certain non-commuting random variables, J. Funct. Anal. 66 (1986), 323–346
- Voiculescu, D., Multiplication of certain noncommuting random variables, J. Operator Theory 18 (1987), 2223–2235
- Anderson, G.W.; Guionnet, A.; Zeitouni, O. (2010). An introduction to random matrices. Cambridge: Cambridge University Press. .
- Benaych-Georges, F., Rectangular random matrices, related convolution, Probab. Theory Related Fields Vol. 144, no. 3 (2009) 471-515.
- Benaych-Georges, F., Rectangular random matrices, related convolution, Probab. Theory Related Fields Vol. 144, no. 3 (2009) 471-515.
- Anderson, G.W.; Guionnet, A.; Zeitouni, O. (2010). An introduction to random matrices. Cambridge: Cambridge University Press. .