Free body diagram explained

In physics and engineering, a free body diagram (FBD; also called a force diagram)[1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies). The body may consist of multiple internal members (such as a truss), or be a compact body (such as a beam). A series of free bodies and other diagrams may be necessary to solve complex problems. Sometimes in order to calculate the resultant force graphically the applied forces are arranged as the edges of a polygon of forces or force polygon (see).

Purpose

Free body diagrams are used to visualize forces and moments applied to a body and to calculate reactions in mechanics problems. These diagrams are frequently used both to determine the loading of individual structural components and to calculate internal forces within a structure. They are used by most engineering disciplines from Biomechanics to Structural Engineering.[2] [3] In the educational environment, a free body diagram is an important step in understanding certain topics, such as statics, dynamics and other forms of classical mechanics.

Features

A free body diagram is not a scaled drawing, it is a diagram. The symbols used in a free body diagram depends upon how a body is modeled.[4]

Free body diagrams consist of:

The number of forces and moments shown depends upon the specific problem and the assumptions made. Common assumptions are neglecting air resistance and friction and assuming rigid body action.

In statics all forces and moments must balance to zero; the physical interpretation is that if they do not, the body is accelerating and the principles of statics do not apply. In dynamics the resultant forces and moments can be non-zero.

Free body diagrams may not represent an entire physical body. Portions of a body can be selected for analysis. This technique allows calculation of internal forces, making them appear external, allowing analysis. This can be used multiple times to calculate internal forces at different locations within a physical body.

For example, a gymnast performing the iron cross: modeling the ropes and person allows calculation of overall forces (body weight, neglecting rope weight, breezes, buoyancy, electrostatics, relativity, rotation of the earth, etc.). Then remove the person and show only one rope; you get force direction. Then only looking at the person the forces on the hand can be calculated. Now only look at the arm to calculate the forces and moments at the shoulders, and so on until the component you need to analyze can be calculated.

Modeling the body

A body may be modeled in three ways:

use a diagram to explain where non specific defence are found and whether they are chemical or just barriers

What is included

An FBD represents the body of interest and the external forces acting on it.

Often a provisional free body is drawn before everything is known. The purpose of the diagram is to help to determine magnitude, direction, and point of application of external loads. When a force is originally drawn, its length may not indicate the magnitude. Its line may not correspond to the exact line of action. Even its orientation may not be correct.

External forces known to have negligible effect on the analysis may be omitted after careful consideration (e.g. buoyancy forces of the air in the analysis of a chair, or atmospheric pressure on the analysis of a frying pan).

External forces acting on an object may include friction, gravity, normal force, drag, tension, or a human force due to pushing or pulling. When in a non-inertial reference frame (see coordinate system, below), fictitious forces, such as centrifugal pseudoforce are appropriate.

At least one coordinate system is always included, and chosen for convenience. Judicious selection of a coordinate system can make defining the vectors simpler when writing the equations of motion or statics. The x direction may be chosen to point down the ramp in an inclined plane problem, for example. In that case the friction force only has an x component, and the normal force only has a y component. The force of gravity would then have components in both the x and y directions: mgsin(θ) in the x and mgcos(θ) in the y, where θ is the angle between the ramp and the horizontal.

Exclusions

A free body diagram should not show:

Analysis

In an analysis, a free body diagram is used by summing all forces and moments (often accomplished along or about each of the axes). When the sum of all forces and moments is zero, the body is at rest or moving and/or rotating at a constant velocity, by Newton's first law. If the sum is not zero, then the body is accelerating in a direction or about an axis according to Newton's second law.

Forces not aligned to an axis

Determining the sum of the forces and moments is straightforward if they are aligned with coordinate axes, but it is more complex if some are not. It is convenient to use the components of the forces, in which case the symbols ΣFx and ΣFy are used instead of ΣF (the variable M is used for moments).

Forces and moments that are at an angle to a coordinate axis can be rewritten as two vectors that are equivalent to the original (or three, for three dimensional problems)—each vector directed along one of the axes (Fx) and (Fy).

Example: A block on an inclined plane

A simple free-body diagram, shown above, of a block on a ramp, illustrates this.

Some care is needed in interpreting the diagram.

Polygon of forces

In the case of two applied forces, their sum (resultant force) can be found graphically using a parallelogram of forces.

To graphically determine the resultant force of multiple forces, the acting forces can be arranged as edges of a polygon by attaching the beginning of one force vector to the end of another in an arbitrary order. Then the vector value of the resultant force would be determined by the missing edge of the polygon. In the diagram, the forces P1 to P6 are applied to the point O. The polygon is constructed starting with P1 and P2 using the parallelogram of forces (vertex a). The process is repeated (adding P3 yields the vertex b, etc.). The remaining edge of the polygon O-e represents the resultant force R.

Kinetic diagram

Free body diagram should not be confused with Kinematic diagram.

In dynamics a kinetic diagram is a pictorial device used in analyzing mechanics problems when there is determined to be a net force and/or moment acting on a body. They are related to and often used with free body diagrams, but depict only the net force and moment rather than all of the forces being considered.

Kinetic diagrams are not required to solve dynamics problems; their use in teaching dynamics is argued against by some in favor of other methods that they view as simpler. They appear in some dynamics texts[6] but are absent in others.[7]

See also

Sources

External links

Notes and References

  1. Web site: Force Diagrams (Free-body Diagrams) . . 2011-03-17 . https://web.archive.org/web/20110317193916/http://physics.wku.edu/phys201/Information/ProblemSolving/ForceDiagrams.html . 2011-03-17 . dead.
  2. Book: Introduction to Statics and Dynamics. Ruina. Andy. Pratap. Rudra. Rudra Pratap. 2010. 79–105. Oxford University Press. 2006-08-04.
  3. Book: Hibbeler , R.C. . Engineering Mechanics: Statics & Dynamics. 11th. 2007. Pearson Prentice Hall. 978-0-13-221509-1. 83–86.
  4. Avinash. Puri. The Art of Free-body Diagrams. Physics Education. 31. 3. 1996. 155. 10.1088/0031-9120/31/3/015. 1996PhyEd..31..155P . 250802652 .
  5. The line of action is important where moment matters
  6. Web site: Stress and Dynamics. August 5, 2015.
  7. Book: Introduction to Statics and Dynamics. Ruina. Andy. Pratap. Rudra. Rudra Pratap. 2002. Oxford University Press. September 4, 2019.