In mathematics, a frame bundle is a principal fiber bundle F(E) associated with any vector bundle E. The fiber of F(E) over a point x is the set of all ordered bases, or frames, for Ex. The general linear group acts naturally on F(E) via a change of basis, giving the frame bundle the structure of a principal GL(k, R)-bundle (where k is the rank of E).
The frame bundle of a smooth manifold is the one associated with its tangent bundle. For this reason it is sometimes called the tangent frame bundle.
Let E → X be a real vector bundle of rank k over a topological space X. A frame at a point x ∈ X is an ordered basis for the vector space Ex. Equivalently, a frame can be viewed as a linear isomorphism
p:Rk\toEx.
p\circg:Rk\toEx.
The frame bundle of E, denoted by F(E) or FGL(E), is the disjoint union of all the Fx:
F(E)=\coprodx\inFx.
The frame bundle F(E) can be given a natural topology and bundle structure determined by that of E. Let (Ui, φi) be a local trivialization of E. Then for each x ∈ Ui one has a linear isomorphism φi,x : Ex → Rk. This data determines a bijection
\psii:\pi-1(Ui)\toUi x GL(k,R)
\psii(x,p)=(x,\varphii,x\circp).
With all of the above data the frame bundle F(E) becomes a principal fiber bundle over X with structure group GL(k, R) and local trivializations . One can check that the transition functions of F(E) are the same as those of E.
The above all works in the smooth category as well: if E is a smooth vector bundle over a smooth manifold M then the frame bundle of E can be given the structure of a smooth principal bundle over M.
A vector bundle E and its frame bundle F(E) are associated bundles. Each one determines the other. The frame bundle F(E) can be constructed from E as above, or more abstractly using the fiber bundle construction theorem. With the latter method, F(E) is the fiber bundle with same base, structure group, trivializing neighborhoods, and transition functions as E but with abstract fiber GL(k, R), where the action of structure group GL(k, R) on the fiber GL(k, R) is that of left multiplication.
Given any linear representation ρ : GL(k, R) → GL(V,F) there is a vector bundle
F(E) x \rhoV
The vector bundle E is naturally isomorphic to the bundle F(E) ×ρ Rk where ρ is the fundamental representation of GL(k, R) on Rk. The isomorphism is given by
[p,v]\mapstop(v)
Any vector bundle associated with E can be given by the above construction. For example, the dual bundle of E is given by F(E) ×ρ* (Rk)* where ρ* is the dual of the fundamental representation. Tensor bundles of E can be constructed in a similar manner.
The tangent frame bundle (or simply the frame bundle) of a smooth manifold M is the frame bundle associated with the tangent bundle of M. The frame bundle of M is often denoted FM or GL(M) rather than F(TM). In physics, it is sometimes denoted LM. If M is n-dimensional then the tangent bundle has rank n, so the frame bundle of M is a principal GL(n, R) bundle over M.
Local sections of the frame bundle of M are called smooth frames on M. The cross-section theorem for principal bundles states that the frame bundle is trivial over any open set in U in M which admits a smooth frame. Given a smooth frame s : U → FU, the trivialization ψ : FU → U × GL(n, R) is given by
\psi(p)=(x,s(x)-1\circp)
Since the tangent bundle of M is trivializable over coordinate neighborhoods of M so is the frame bundle. In fact, given any coordinate neighborhood U with coordinates (x1,…,xn) the coordinate vector fields
\left( | \partial | ,\ldots, |
\partialx1 |
\partial | |
\partialxn |
\right)
The frame bundle of a manifold M is a special type of principal bundle in the sense that its geometry is fundamentally tied to the geometry of M. This relationship can be expressed by means of a vector-valued 1-form on FM called the solder form (also known as the fundamental or tautological 1-form). Let x be a point of the manifold M and p a frame at x, so that
p:Rn\toTxM
\thetap(\xi)=p-1d\pi(\xi)
*\theta | |
R | |
g |
=g-1\theta
As a naming convention, the term "tautological one-form" is usually reserved for the case where the form has a canonical definition, as it does here, while "solder form" is more appropriate for those cases where the form is not canonically defined. This convention is not being observed here.
If a vector bundle E is equipped with a Riemannian bundle metric then each fiber Ex is not only a vector space but an inner product space. It is then possible to talk about the set of all orthonormal frames for Ex. An orthonormal frame for Ex is an ordered orthonormal basis for Ex, or, equivalently, a linear isometry
p:Rk\toEx
The orthonormal frame bundle of E, denoted FO(E), is the set of all orthonormal frames at each point x in the base space X. It can be constructed by a method entirely analogous to that of the ordinary frame bundle. The orthonormal frame bundle of a rank k Riemannian vector bundle E → X is a principal O(k)-bundle over X. Again, the construction works just as well in the smooth category.
If the vector bundle E is orientable then one can define the oriented orthonormal frame bundle of E, denoted FSO(E), as the principal SO(k)-bundle of all positively oriented orthonormal frames.
If M is an n-dimensional Riemannian manifold, then the orthonormal frame bundle of M, denoted FOM or O(M), is the orthonormal frame bundle associated with the tangent bundle of M (which is equipped with a Riemannian metric by definition). If M is orientable, then one also has the oriented orthonormal frame bundle FSOM.
Given a Riemannian vector bundle E, the orthonormal frame bundle is a principal O(k)-subbundle of the general linear frame bundle. In other words, the inclusion map
i:{F}O(E)\to{F}GL(E)
See also: G-structure.
If a smooth manifold M comes with additional structure it is often natural to consider a subbundle of the full frame bundle of M which is adapted to the given structure. For example, if M is a Riemannian manifold we saw above that it is natural to consider the orthonormal frame bundle of M. The orthonormal frame bundle is just a reduction of the structure group of FGL(M) to the orthogonal group O(n).
In general, if M is a smooth n-manifold and G is a Lie subgroup of GL(n, R) we define a G-structure on M to be a reduction of the structure group of FGL(M) to G. Explicitly, this is a principal G-bundle FG(M) over M together with a G-equivariant bundle map
{F}G(M)\to{F}GL(M)
In this language, a Riemannian metric on M gives rise to an O(n)-structure on M. The following are some other examples.
In many of these instances, a G-structure on M uniquely determines the corresponding structure on M. For example, a SL(n, R)-structure on M determines a volume form on M. However, in some cases, such as for symplectic and complex manifolds, an added integrability condition is needed. A Sp(2n, R)-structure on M uniquely determines a nondegenerate 2-form on M, but for M to be symplectic, this 2-form must also be closed.