Fokker–Planck equation explained
In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well.[1] The Fokker-Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.
It is named after Adriaan Fokker and Max Planck, who described it in 1914 and 1917.[2] [3] It is also known as the Kolmogorov forward equation, after Andrey Kolmogorov, who independently discovered it in 1931.[4] When applied to particle position distributions, it is better known as the Smoluchowski equation (after Marian Smoluchowski),[5] and in this context it is equivalent to the convection–diffusion equation. When applied to particle position and momentum distributions, it is known as the Klein–Kramers equation. The case with zero diffusion is the continuity equation. The Fokker - Planck equation is obtained from the master equation through Kramers–Moyal expansion.[6]
The first consistent microscopic derivation of the Fokker–Planck equation in the single scheme of classical and quantum mechanics was performed by Nikolay Bogoliubov and Nikolay Krylov.[7] [8]
One dimension
and described by the
stochastic differential equation (SDE)
with
drift
and
diffusion coefficient
, the Fokker–Planck equation for the probability density
of the random variable
is In the following, use
.
(the following can be found in Ref.
[9]):
The transition probability
, the probability of going from
to
, is introduced here; the expectation can be written as
Now we replace in the definition of
, multiply by
and integrate over
. The limit is taken on
Note now that
which is the Chapman–Kolmogorov theorem. Changing the dummy variable
to
, one gets
which is a time derivative. Finally we arrive to
From here, the Kolmogorov backward equation can be deduced. If we instead use the adjoint operator of
,
, defined such that
then we arrive to the Kolmogorov forward equation, or Fokker–Planck equation, which, simplifying the notation
, in its differential form reads
Remains the issue of defining explicitly
. This can be done taking the expectation from the integral form of the
Itô's lemma:
The part that depends on
vanished because of the martingale property.
Then, for a particle subject to an Itô equation, usingit can be easily calculated, using integration by parts, thatwhich bring us to the Fokker–Planck equation:
While the Fokker–Planck equation is used with problems where the initial distribution is known, if the problem is to know the distribution at previous times, the Feynman–Kac formula can be used, which is a consequence of the Kolmogorov backward equation.
The stochastic process defined above in the Itô sense can be rewritten within the Stratonovich convention as a Stratonovich SDE:It includes an added noise-induced drift term due to diffusion gradient effects if the noise is state-dependent. This convention is more often used in physical applications. Indeed, it is well known that any solution to the Stratonovich SDE is a solution to the Itô SDE.
The zero-drift equation with constant diffusion can be considered as a model of classical Brownian motion:
This model has discrete spectrum of solutions if the condition of fixed boundaries is added for
:
It has been shown[10] that in this case an analytical spectrum of solutions allows deriving a local uncertainty relation for the coordinate-velocity phase volume:Here
is a minimal value of a corresponding diffusion spectrum
, while
and
represent the uncertainty of coordinate–velocity definition.
Higher dimensions
More generally, if
where
and
are -dimensional
vectors,
\boldsymbol{\sigma}(Xt,t)
is an
matrix and
is an
M-dimensional standard
Wiener process, the probability density
for
satisfies the Fokker–Planck equationwith drift vector
\boldsymbol{\mu}=(\mu1,\ldots,\muN)
and diffusion
tensor , i.e.
If instead of an Itô SDE, a Stratonovich SDE is considered,
the Fokker–Planck equation will read:[9]
Generalization
In general, the Fokker–Planck equations are a special case to the general Kolmogorov forward equation
where the linear operator
is the
Hermitian adjoint to the
infinitesimal generator for the
Markov process.
[11] Examples
Wiener process
A standard scalar Wiener process is generated by the stochastic differential equation
Here the drift term is zero and the diffusion coefficient is 1/2. Thus the corresponding Fokker–Planck equation is
which is the simplest form of a diffusion equation. If the initial condition is
, the solution is
Boltzmann distribution at the thermodynamic equilibrium
The overdamped Langevin equationgives . The Boltzmann distribution
is an equilibrium distribution, and assuming
grows sufficiently rapidly (that is, the potential well is deep enough to confine the particle), the Boltzmann distribution is the unique equilibrium.
Ornstein–Uhlenbeck process
The Ornstein–Uhlenbeck process is a process defined as
with
. Physically, this equation can be motivated as follows: a particle of mass
with velocity
moving in a medium, e.g., a fluid, will experience a friction force which resists motion whose magnitude can be approximated as being proportional to particle's velocity
with
. Other particles in the medium will randomly kick the particle as they collide with it and this effect can be approximated by a white noise term;
. Newton's second law is written as
Taking
for simplicity and changing the notation as
leads to the familiar form
.
The corresponding Fokker–Planck equation is
The stationary solution (
) is
Plasma physics
In plasma physics, the distribution function for a particle species
,
, takes the place of the
probability density function. The corresponding Boltzmann equation is given by
where the third term includes the particle acceleration due to the Lorentz force and the Fokker–Planck term at the right-hand side represents the effects of particle collisions. The quantities
and
\langle\Deltavi\Deltavj\rangle
are the average change in velocity a particle of type
experiences due to collisions with all other particle species in unit time. Expressions for these quantities are given elsewhere.
[12] If collisions are ignored, the Boltzmann equation reduces to the
Vlasov equation.
Smoluchowski diffusion equation
Consider an overdamped Brownian particle under external force
:
[13] where the
term is negligible (the meaning of "overdamped"). Thus, it is just
\gammadr=F(r)dt+\sigmadWt
. The Fokker–Planck equation for this particle is the Smoluchowski diffusion equation:
Where
is the diffusion constant and
. The importance of this equation is it allows for both the inclusion of the effect of temperature on the system of particles and a spatially dependent diffusion constant.
Starting with the Langevin Equation of a Brownian particle in external field
, where
is the friction term,
is a fluctuating force on the particle, and
is the amplitude of the fluctuation.
At equilibrium the frictional force is much greater than the inertial force,
\left\vert\gamma
\right\vert\gg\left\vertm\ddot{r}\right\vert
. Therefore, the Langevin equation becomes,
Which generates the following Fokker–Planck equation,
Rearranging the Fokker–Planck equation,
Where
.
Note, the diffusion coefficient may not necessarily be spatially independent if
or
are spatially dependent.
Next, the total number of particles in any particular volume is given by,
Therefore, the flux of particles can be determined by taking the time derivative of the number of particles in a given volume, plugging in the Fokker–Planck equation, and then applying Gauss's Theorem.
In equilibrium, it is assumed that the flux goes to zero. Therefore, Boltzmann statistics can be applied for the probability of a particles location at equilibrium, where
is a conservative force and the probability of a particle being in a state
is given as
.
This relation is a realization of the fluctuation–dissipation theorem. Now applying
to
and using the Fluctuation-dissipation theorem,
Rearranging,
Therefore, the Fokker–Planck equation becomes the Smoluchowski equation,for an arbitrary force
.
Computational considerations
Brownian motion follows the Langevin equation, which can be solved for many different stochastic forcings with results being averaged (canonical ensemble in molecular dynamics). However, instead of this computationally intensive approach, one can use the Fokker–Planck equation and consider the probability
of the particle having a velocity in the interval
when it starts its motion with
at time 0.
1-D linear potential example
Brownian dynamics in one dimension is simple.[14]
Theory
Starting with a linear potential of the form
the corresponding Smoluchowski equation becomes,
Where the diffusion constant,
, is constant over space and time. The boundary conditions are such that the probability vanishes at
with an initial condition of the ensemble of particles starting in the same place,
P(x,t|x0,t0)=\delta(x-x0)
.
Defining
and
and applying the coordinate transformation,
With
P(x,t,|x0,t0)=q(y,\tau|y0,\tau0)
the Smoluchowki equation becomes,
Which is the free diffusion equation with solution,
And after transforming back to the original coordinates,
Simulation
The simulation on the right was completed using a Brownian dynamics simulation.[15] [16] Starting with a Langevin equation for the system,where
is the friction term,
is a fluctuating force on the particle, and
is the amplitude of the fluctuation. At equilibrium the frictional force is much greater than the inertial force,
\left|\gamma
\right|\gg\left|m\ddot{x}\right|
. Therefore, the Langevin equation becomes,
For the Brownian dynamic simulation the fluctuation force
is assumed to be Gaussian with the amplitude being dependent of the temperature of the system
. Rewriting the Langevin equation,
where is the Einstein relation. The integration of this equation was done using the Euler–Maruyama method to numerically approximate the path of this Brownian particle.
Solution
Being a partial differential equation, the Fokker–Planck equation can be solved analytically only in special cases. A formal analogy of the Fokker–Planck equation with the Schrödinger equation allows the use of advanced operator techniques known from quantum mechanics for its solution in a number of cases. Furthermore, in the case of overdamped dynamics when the Fokker–Planck equation contains second partial derivatives with respect to all spatial variables, the equation can be written in the form of a master equation that can easily be solved numerically.[17] In many applications, one is only interested in the steady-state probability distribution
, which can be found from
.The computation of mean
first passage times and splitting probabilities can be reduced to the solution of an ordinary differential equation which is intimately related to the Fokker–Planck equation.
Particular cases with known solution and inversion
In mathematical finance for volatility smile modeling of options via local volatility, one has the problem of deriving a diffusion coefficient
consistent with a probability density obtained from market option quotes. The problem is therefore an inversion of the Fokker–Planck equation: Given the density f(x,t) of the option underlying
X deduced from the option market, one aims at finding the local volatility
consistent with
f. This is an
inverse problem that has been solved in general by Dupire (1994, 1997) with a non-parametric solution.
[18] [19] Brigo and Mercurio (2002, 2003) propose a solution in parametric form via a particular local volatility
consistent with a solution of the Fokker–Planck equation given by a
mixture model.
[20] [21] More information is available also in Fengler (2008),
[22] Gatheral (2008),
[23] and Musiela and Rutkowski (2008).
[24] Fokker–Planck equation and path integral
Every Fokker–Planck equation is equivalent to a path integral. The path integral formulation is an excellent starting point for the application of field theory methods.[25] This is used, for instance, in critical dynamics.
A derivation of the path integral is possible in a similar way as in quantum mechanics. The derivation for a Fokker–Planck equation with one variable
is as follows. Start by inserting a
delta function and then integrating by parts:
The
-derivatives here only act on the
-function, not on
. Integrate over a time interval
,
Insert the Fourier integral
for the
-function,
This equation expresses
as functional of
. Iterating
times and performing the limit
gives a path integral with
action
The variables
conjugate to
are called "response variables".
[26] Although formally equivalent, different problems may be solved more easily in the Fokker–Planck equation or the path integral formulation. The equilibrium distribution for instance may be obtained more directly from the Fokker–Planck equation.
See also
Further reading
- Book: Frank, Till Daniel . 2005 . Nonlinear Fokker–Planck Equations: Fundamentals and Applications . Springer Series in Synergetics . Springer . 3-540-21264-7 .
- Book: Gardiner, Crispin . Crispin Gardiner . 2009 . Stochastic Methods . 4th . Springer . 978-3-540-70712-7 .
- Book: Pavliotis, Grigorios A. . Stochastic Processes and Applications: Diffusion Processes, the Fokker–Planck and Langevin Equations . 2014 . Springer Texts in Applied Mathematics . Springer . 978-1-4939-1322-0 .
- Book: Risken, Hannes . The Fokker–Planck Equation: Methods of Solutions and Applications . 2nd . 1996 . Springer Series in Synergetics . Springer . 3-540-61530-X .
Notes and References
- Book: Statistical Physics: statics, dynamics and renormalization. Leo P. Kadanoff. World Scientific. 978-981-02-3764-6. 2000.
- Fokker. A. D.. 1914. Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. Phys.. 348. 4. Folge 43. 810–820. 1914AnP...348..810F. 10.1002/andp.19143480507.
- Planck. M.. 1917. Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie. Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin. 24. 324–341.
- Andrei . Kolmogorov . Über die analytischen Methoden in der Wahrscheinlichkeitstheorie . . 104 . 1 . On Analytical Methods in the Theory of Probability . 415–458 [pp. 448–451] . 1931 . de . 10.1007/BF01457949 . 119439925 .
- Book: Dhont, J. K. G.. An Introduction to Dynamics of Colloids. Elsevier. 1996. 978-0-08-053507-4. 183.
- Book: Wolfgang . Paul . Jörg . Baschnagel . A Brief Survey of the Mathematics of Probability Theory . Stochastic Processes . 17–61 [esp. 33–35] . Springer . 2013 . 978-3-319-00326-9. 10.1007/978-3-319-00327-6_2 .
- [Nikolay Boglyubov Jr.|N. N. Bogolyubov Jr.]
- [Nikolay Bogoliubov|N. N. Bogoliubov]
- Book: Öttinger, Hans Christian. Stochastic Processes in Polymeric Fluids. 1996. Springer-Verlag. Berlin-Heidelberg. 978-3-540-58353-0. 75.
- Kamenshchikov . S. . Clustering and Uncertainty in Perfect Chaos Systems. Journal of Chaos . 2014 . 1–6 . 2014 . 10.1155/2014/292096. 1301.4481 . 17719673 . free .
- Book: Pavliotis, Grigorios A. . 2014 . Stochastic Processes and Applications : Diffusion Processes, the Fokker-Planck and Langevin Equations . Springer . 978-1-4939-1322-0 . 38–40 . 10.1007/978-1-4939-1323-7_2 .
- Rosenbluth . M. N. . Fokker–Planck Equation for an Inverse-Square Force . Physical Review . 107 . 1. 1–6 . 1957 . 10.1103/physrev.107.1. 1957PhRv..107....1R .
- Web site: Smoluchowski Diffusion Equation. Ioan. Kosztin. Spring 2000. Non-Equilibrium Statistical Mechanics: Course Notes.
- Web site: The Brownian Dynamics Method Applied. Kosztin. Ioan. Spring 2000. Non-Equilibrium Statistical Mechanics: Course Notes.
- Web site: Brownian Dynamics. Koztin. Ioan. Non-Equilibrium Statistical Mechanics: Course Notes. 2020-05-18. 2020-01-15 . https://web.archive.org/web/20200115202424/http://www.ks.uiuc.edu/~kosztin/PHYCS498NSM/. dead.
- Web site: The Brownian Dynamics Method Applied. Kosztin. Ioan . Non-Equilibrium Statistical Mechanics: Course Notes. 2020-05-18. 2020-01-15 . https://web.archive.org/web/20200115202424/http://www.ks.uiuc.edu/~kosztin/PHYCS498NSM/. dead.
- Holubec Viktor, Kroy Klaus, and Steffenoni Stefano . Physically consistent numerical solver for time-dependent Fokker–Planck equations . Phys. Rev. E . 99 . 4. 032117 . 2019 . 10.1103/PhysRevE.99.032117. 30999402 . 1804.01285 . 2019PhRvE..99c2117H . 119203025 .
- [Bruno Dupire]
- [Bruno Dupire]
- 10.1142/S0219024902001511. 2002. Brigo . D.. Mercurio. Fabio. Lognormal-Mixture Dynamics and Calibration to Market Volatility Smiles. International Journal of Theoretical and Applied Finance. 5. 4. 427–446. 10.1.1.210.4165.
- 10.1088/1469-7688/3/3/303. Alternative asset-price dynamics and volatility smile. 2003. Brigo . D.. Mercurio . F.. Sartorelli . G.. Quantitative Finance. 3. 3. 173–183. 154069452.
- Fengler, M. R. (2008). Semiparametric Modeling of Implied Volatility, 2005, Springer Verlag,
- [Jim Gatheral]
- Marek Musiela, Marek Rutkowski. Martingale Methods in Financial Modelling, 2008, 2nd Edition, Springer-Verlag, .
- Book: Zinn-Justin, Jean . Quantum field theory and critical phenomena . Clarendon Press . Oxford . 1996 . 978-0-19-851882-2 .
- Janssen . H. K. . On a Lagrangean for Classical Field Dynamics and Renormalization Group Calculation of Dynamical Critical Properties . Z. Phys. . B23 . 4. 377–380 . 1976 . 10.1007/BF01316547 . 1976ZPhyB..23..377J . 121216943 .