In combinatorial mathematics, the XYZ inequality, also called the Fishburn–Shepp inequality, is an inequality for the number of linear extensions of finite partial orders. The inequality was conjectured by Ivan Rival and Bill Sands in 1981. It was proved by Lawrence Shepp in . An extension was given by Peter Fishburn in .
It states that if x, y, and z are incomparable elements of a finite poset, then
P(x\precy)P(x\precz)\leqslantP((x\precy)\wedge(x\precz))
where P(A) is the probability that a linear order extending the partial order
\prec
In other words, the probability that
x\precz
x\precy
P(x\precz)\leqslantP(x\precz\midx\precy).
The proof uses the Ahlswede–Daykin inequality.