In mathematics, a fibrifold is (roughly) a fiber space whose fibers and base spaces are orbifolds. They were introduced by, who introduced a system of notation for 3-dimensional fibrifolds and used this to assign names to the 219 affine space group types. 184 of these are considered reducible, and 35 irreducible.
The 35 irreducible space groups correspond to the cubic space group.
8o:2 | 4−:2 | 4o:2 | 4+:2 | 2−:2 | 2o:2 | 2+:2 | 1o:2 | ||||
8o | 4− | 4o | 4+ | 2− | 2o | 2+ | 1o | ||||
8o/4 | 4−/4 | 4o/4 | 4+/4 | 2−/4 | 2o/4 | 2+/4 | 1o/4 | ||||
8−o | 8oo | 8+o | 4− − | 4−o | 4oo | 4+o | 4++ | 2−o | 2oo | 2+o |
Class Point group | Hexoctahedral *432 (mm) | Hextetrahedral *332 (3m) | Gyroidal 432 (432) | Diploidal 3*2 (m) | Tetartoidal 332 (23) | |
---|---|---|---|---|---|---|
bc lattice (I) | 8o:2 (Imm) | 4o:2 (I3m) | 8+o (I432) | 8−o (I) | 4oo (I23) | |
nc lattice (P) | 4−:2 (Pmm) | 2o:2 (P3m) | 4−o (P432) | 4− (Pm) | 2o (P23) | |
4+:2 (Pnm) | 4+ (P4232) | 4+o (Pn) | ||||
fc lattice (F) | 2−:2 (Fmm) | 1o:2 (F3m) | 2−o (F432) | 2− (Fm) | 1o (F23) | |
2+:2 (Fdm) | 2+ (F4132) | 2+o (Fd) | ||||
Other lattice groups | 8o (Pmn) 8oo (Pnn) 4− − (Fmc) 4++ (Fdc) | 4o (P3n) 2oo (F3c) | ||||
Achiral quarter groups | 8o/4 (Iad) | 4o/4 (I3d) | 4+/4 (I4132) 2+/4 (P4332, P4132) | 2−/4 (Pa) 4−/4 (Ia) | 1o/4 (P213) 2o/4 (I213) |
Irreducible group symbols (indexed 195−230) in Hermann–Mauguin notation, Fibrifold notation, geometric notation, and Coxeter notation:
Class (Orbifold point group) | Space groups | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tetartoidal 23 (332) | 195 | 196 | 197 | 198 | 199 | |||||
P23 | F23 | I23 | P213 | I213 | ||||||
2o | 1o | 4oo | 1o/4 | 2o/4 | ||||||
P.. | F.. | I.. | P..1 | I..1 | ||||||
[(4,3<sup>+</sup>,4,2<sup>+</sup>)] | [3<sup>[4]]+ | |||||||||
Diploidal 3m (3*2) | 200 | 201 | 202 | 203 | 204 | 205 | 206 | |||
Pm | Pn | Fm | Fd | I | Pa | Ia | ||||
4− | 4+o | 2− | 2+o | 8−o | 2−/4 | 4−/4 | ||||
P4 | Pn4 | F4 | Fd4 | I4 | Pb4 | Ib4 | ||||
[4,3<sup>+</sup>,4] | [[4,3+,4]+] | [4,(3<sup>1,1</sup>)<sup>+</sup>] | [[3[4]]]+ | [[4,3+,4]] | ||||||
Gyroidal 432 (432) | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | ||
P432 | P4232 | F432 | F4132 | I432 | P4332 | P4132 | I4132 | |||
4−o | 4+ | 2−o | 2+ | 8+o | 2+/4 | 4+/4 | ||||
P.. | P2.. | F.. | F1.. | I.. | P3.. | P1.. | I1.. | |||
[4,3,4]+ | [[4,3,4]+]+ | [4,3<sup>1,1</sup>]+ | [[3[4]]]+ | [[4,3,4]]+ | ||||||
Hextetrahedral 3m (*332) | 215 | 216 | 217 | 218 | 219 | 220 | ||||
P3m | F3m | I3m | P3n | F3c | I3d | |||||
2o:2 | 1o:2 | 4o:2 | 4o | 2oo | 4o/4 | |||||
P33 | F33 | I33 | Pn3n3n | Fc3c3a | Id3d3d | |||||
[(4,3,4,2<sup>+</sup>)] | [3<sup>[4]] | [[(4,3,4,2+)]] | [[(4,3,4,2+)]+] | [<sup>+</sup>(4,{3),4}<sup>+</sup>] | ||||||
Hexoctahedral mm (*432) | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 |
Pmm | Pnn | Pmn | Pnm | Fmm | Fmc | Fdm | Fdc | Imm | Iad | |
4−:2 | 8oo | 8o | 4+:2 | 2−:2 | 4−− | 2+:2 | 4++ | 8o:2 | 8o/4 | |
P43 | Pn4n3n | P4n3n | Pn43 | F43 | F4c3a | Fd4n3 | Fd4c3a | I43 | Ib4d3d | |
[4,3,4] | [[4,3,4]+] | [(4<sup>+</sup>,2<sup>+</sup>)[3<sup>[4]]] | [4,3<sup>1,1</sup>] | [4,(3,4)<sup>+</sup>] | [[3[4]]] | [[+(4,+]] | [[4,3,4]] |
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Fibrifold".
Except where otherwise indicated, Everything.Explained.Today is © Copyright 2009-2024, A B Cryer, All Rights Reserved. Cookie policy.